We describe an adaptation of the rolling circle amplification (RCA) reporter system for the detection of protein Ags, termed ''immunoRCA.'' In immunoRCA, an oligonucleotide primer is covalently attached to an Ab; thus, in the presence of circular DNA, DNA polymerase, and nucleotides, amplification results in a long DNA molecule containing hundreds of copies of the circular DNA sequence that remain attached to the Ab and that can be detected in a variety of ways. Using immunoRCA, analytes were detected at sensitivities exceeding those of conventional enzyme immunoassays in ELISA and microparticle formats. The signal amplification afforded by immunoRCA also enabled immunoassays to be carried out in microspot and microarray formats with exquisite sensitivity. When Ags are present at concentrations down to fM levels, specifically bound Abs can be scored by counting discrete fluorescent signals arising from individual Ag-Ab complexes. Multiplex immunoRCA also was demonstrated by accurately quantifying Ags mixed in different ratios in a two-color, single-molecule-counting assay on a glass slide. ImmunoRCA thus combines high sensitivity and a very wide dynamic range with an unprecedented capability for single molecule detection. This Ag-detection method is of general applicability and is extendable to multiplexed immunoassays that employ a battery of different Abs, each labeled with a unique oligonucleotide primer, that can be discriminated by a color-coded visualization system. ImmunoRCA-profiling based on the simultaneous quantitation of multiple Ags should expand the power of immunoassays by exploiting the increased information content of ratio-based expression analysis.prostate-specific antigen ͉ human IgE ͉ IgG ͉ ELISA ͉ immuno-microarrays
The human transcription factor pregnane X receptor (hPXR) is a key regulator of enzyme expression, especially cytochrome P450 3A4 (CYP3A4). Due to the prominence of CYP3A4 in the elimination of many drugs, the development of high throughput in vitro models to predict the effect of drugs on CYP3A4 expression have increased. To better interpret and predict potential drug-drug interactions due to CYP3A4 enzyme induction, we evaluated 170 xenobiotics in a hPXR transactivation assay and compared these results to known clinical drug-drug interactions. Of the 170 xenobiotics tested, 54% of them demonstrated some level of hPXR transactivation. By taking into consideration cell culture conditions (solubility, cytotoxicity, appropriate drug concentration in media), as well as in vivo pharmacokinetics (therapeutic plasma C(max), distribution, route of administration, dosing regimen, liver exposure, potential to inhibit CYP3A4), the risk potential of CYP3A4 enzyme induction for most compounds reduced dramatically. By employing this overall interpretation strategy, the final percentage of compounds predicted to significantly induce CYP3A4 reduced to 5%, all of which are known to cause drug-drug interactions. Also, this is the first report that identifies several potent compounds that have the ability to transactivate hPXR that previously have not been identified, such as terbinafine, diclofenac, sildenafil, glimepiride, montelukast, and ticlopidine.
A DNA-encoded macrocyclic peptide library was designed and synthesized with 2.4 × 10 members composed of 4-20 natural and non-natural amino acids. Affinity-based selection was performed against two therapeutic targets, VHL and RSV N protein. On the basis of selection data, some peptides were selected for resynthesis without a DNA tag, and their activity was confirmed.
Directly labeled fluorescent DNA probes have been made by nick translation and PCR using dUTP attached to the fluorescent label, Cy3, with different length linkers. With preparation of probes by PCR we find that linker length affects the efficiency of incorporation of Cy3-dUTP, the yield of labeled probe, and the signal intensity of labeled probes hybridized to chromosome target sequences. For nick translation and PCR, both the level of incorporation and the hybridization fluorescence signal increased in parallel when the length of the linker arm is increased. Under optimal conditions, PCR yielded more densely labeled probes, however, the yield of PCR labeled probe decreased with greater linear density of labeling. By using a Cy3-modified dUTP with the longest linker under optimal conditions it was possible to label up to 28% of the possible substitution sites on the target DNA with reasonable yield by PCR and 18% by nick translation. A mechanism involving steric interactions between the polymerase, cyanine-labeled sites on template and extending chains and the modified dUTP substrate is proposed to explain the inverse correlation between the labeling efficiency and the yield of DNA probe synthesis by PCR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.