Surface soils hold the largest terrestrial organic carbon pool, although estimates of the world's soil organic carbon storage remain controversial, largely due to spatial data gaps or insufficient data density. In this study, spatial distribution and storage of soil organic carbon in China are estimated using the published data from 34,411 soil profiles investigated during China's second national soil survey. Results show that organic carbon density in soils varies from 0.73 to 70.79 kg C/m2 with the majority ranging between 4.00 and 11.00 kg C/m2. Carbon density decreases from east to west. A general southward increase is obvious for western China, while carbon density decreases from north to south in eastern China. Highest values are observed in forest soils in northeast China and in subalpine soils in the southeastern part of the Tibetan Plateau. The average density of ∼8.01 kg C/m2 in China is lower than the world's mean organic carbon density in soil (∼10.60 kg C/m2), mainly due to the extended arid and semi‐arid regions. Total organic carbon storage in soils in China is estimated to be ∼70.31 Pg C, representing ∼4.7% of the world storage. Carbon storage in the surface organic horizons which is most sensitive to interactions with the atmosphere and environmental change is ∼32.54 Pg C.
Understanding long-term drought variations in the past can help to evaluate ongoing and future hydroclimate change in the arid western Chinese Loess Plateau (WCLP), a region with increasing demand for water resources due to the increasing population and socioeconomic activities. Here we present a new tree-ring chronology inform the WCLP, which shows coherent interannual variations with tree-ring chronologies from 7 neighboring areas across the WCLP, suggesting a common regional climate control over tree growth. However, considerable differences are observed among their interdecadal variations, which are likely due to growth disturbances at interdecadal timescales. To deal with this issue, we use a frequency based method to develop a composite tree-ring chronology from 401 tree-ring series from these 8 sites, which shows more pronounced interdecadal variability than a chronology developed using traditional methods. The composite tree-ring chronology is used to reconstruct the annual precipitation from previous August to current July from 1568 to 2012, extending about 50 years longer than the previous longest tree-ring reconstruction from the region. The driest epoch of our reconstruction is found in the 1920s-30s, which matches well with droughts recorded in historical documents. Over the past four centuries, a strong resemblance between drought variability in the WCLP and western North America (WNA) is evident on multidecadal timescales, but this relationship breaks down on timescales shorter than about 50 years.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.