Background: NLR family pyrin domain containing 3 (NLRP3) inflammasome has been implicated in the development of atherosclerosis and several studies have suggested that inhibiting NLRP3 inflammasome could be a potential therapeutic approach to treat atherosclerosis. Baicalin is a flavone glycoside with anti-inflammation, anti-oxidative activities. The inhibition of NLRP3 inflammasome activation by baicalin has also been described. Therefore, the effects of baicalin on NLRP3 inflammasome activation and atherosclerosis were evaluated in present study. Methods: We established the apolipoprotein E-deficient atherosclerosis mice model. After baicalin treatment, the IL-1, IL-18, and reactive oxygen species (ROS) production, and the plaque area was monitored. We also measured the NLRP3, ASC, caspase-1, ICAM-1, and VCAM-1 expression in atherosclerosis mice after baicalin treatment. We silenced NLRP3 by administration of lentivirus expressing NLRP3 shRNA to atherosclerosis mice and monitored the IL-1, IL-18, and ROS production, and NLRP3 inflammasome activation. Results: Baicalin remarkably inhibited the production of IL-1, IL-18, mitochondria ROS, total ROS, ICAM-1, and VCAM-1. Baicalin reduced the expression of NLRP3 inflammasome and suppressed its activation. Baicalin significantly reduced the plaque area. Silencing NLRP3 resulted in decreased production of IL-1, IL-18, mitochondria ROS, total ROS, ICAM-1, and VCAM-1, and inhibition of NLRP3 inflammasome activation. Conclusion: Baicalin ameliorated atherosclerosis by inhibiting NLRP3 inflammasome.
Since its commercialization in the 1990s, the lithium-ion battery has been a huge success in the energy industry owing to its high energy density and long cycle life. They have been used in national strategic fields, such as satellites and unmanned aircraft, to promote a remarkable leap forward in new energy, new energy vehicles, and other emerging industries. Therefore, the development of lithium-ion batteries is a strategic high ground for competition among countries worldwide.The development and widespread use of lithium-ion batteries is driven by their high energy/power density, long cycle life, and low cost, which requires battery material innovation as well as advancements in manufacturing processes and equipment technology. Particularly, the power and energy storage applications require numbers of battery cells connected in series or parallel. High precision is required to ensure the consistency of the battery cell, to avoid module capacity loss and cycle life attenuation owing to the "shortboard effect," and to ensure battery safety. Electrode manufacturing, which is the first critical process of lithium-ion battery production, consists of three critical steps: mixing, coating, and rolling. The positive and negative electrode active materials, conductive agents, binders and solvents are mixed into slurry and coated on copper or aluminum foil. The positive/negative electrodes, which constitute the electrochemical reaction carrier and the battery's core, are obtained after drying and roller compaction. The porous and multi-component electrode microstructure evolves and is constructed in a complex way during electrode manufacturing. The proportion of electrode slurry, mixing order, coating method, drying strategy, and rolling process can considerably affect the evolution of electrode microstructure, such as pore structure, active particle distribution and, conductive/bonding network. It also influences the lithium-ion battery's electrochemical performance. Despite tremendous advances in high-energy-density materials, research on lithium-ion battery manufacturing lags, resulting a large gap between laboratory and production scales.This requires an in-depth understanding of the manufacturing and the relationship between electrode microstructure evolution and battery performance.The advancement and application of cutting-edge slurry mixing, coating, and calendering technologies in electrode manufacturing are thoroughly reviewed in this paper. The evolution of electrode microstructure during manufacturing, in particular, and its impact on the battery's electrochemical performance, are discussed in detail. Then, various novel electrode manufacturing techniques are summarized in terms of their significance and challenges, covering the innovations based on the current process (aqueous processing, simultaneous double-sided slot coating, multilayer co-coating and, multistage drying), dry processing (electron beam and ultraviolet curing forming, electrostatic dry-powder coating), threedimensional printing, template-ba...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.