Although three-dimensional metal halide perovskite (ABX3) single crystals are promising next-generation materials for radiation detection, state-of-the-art perovskite X-ray detectors include methylammonium as A-site cations, limiting the operational stability. Previous efforts to improve the stability using formamidinium–caesium-alloyed A-site cations usually sacrifice the detection performance because of high trap densities. Here we successfully solve this trade-off between stability and detection performance by synergistic composition engineering, where we include A-site alloys to decrease the trap density and B-site dopants to release the microstrain induced by A-site alloying. As such, we develop high-performance perovskite X-ray detectors with excellent stability. Our X-ray detectors exhibit high sensitivity of (2.6 ± 0.1) × 104 μC Gyair−1 cm−2 under 1 V cm−1 and ultralow limit of detection of 7.09 nGyair s−1. In addition, they feature long-term operational stability over half a year and impressive thermal stability up to 125 °C. We further demonstrate the promise of our perovskite X-ray detectors for low-bias portable applications with high-quality X-ray imaging and monitoring prototypes.
The 8-layered shifted hexagonal perovskite compound Ba8ZnNb6O24 was isolated via controlling the ZnO volatilization, which features long-range B-cation ordering with nanometer-scale separation by ∼1.9 nm of octahedral d(10) cationic (Zn(2+)) layers within the purely corner-sharing octahedral d(0) cationic (Nb(5+)) host. The long-range ordering of the B-site vacancy and out-of-center distortion of the highly-charged d(0) Nb(5+) that is assisted by the second-order Jahn-Teller effect contribute to this unusual B-cation ordering in Ba8ZnNb6O24. A small amount (∼15%) of d(10) Sb(5+) substitution for Nb(5+) in Ba8ZnNb6-xSbxO24 dramatically transformed the shifted structure to a twinned structure, in contrast with the Ba8ZnNb6-xTaxO24 case requiring 50% d(0) Ta(5+) substitution for Nb(5+) for such a shift-to-twin transformation. Multiple factors including B-cationic sizes, electrostatic repulsion forces, long-range ordering of B-site vacancies, and bonding preferences arising from a covalent contribution to the B-O bonding that includes out-of-center octahedral distortion and the B-O-B bonding angle could subtly contribute to the twin-shift phase competition of B-site deficient 8-layered hexagonal perovskites Ba8B7O24. The ceramics of new shifted Ba8ZnNb6O24 and twinned Ba8ZnNb5.1Sb0.9O24 compounds exhibited good microwave dielectric properties (εr ∼ 35, Qf ∼ 36 200-43 400 GHz and τf ∼ 38-44 ppm/°C).
Novel PtCu alloy yolk-shell cubes were fabricated via the disproportionation and displacement reactions in Cu2O yolk-shell cubes, and they exhibit significantly improved catalytic activity and durability for methanol electrooxidation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.