Point mutations frequently cause genetic diseases by disrupting the correct pattern of pre-mRNA splicing. The effect of a point mutation within a coding sequence is traditionally attributed to the deduced change in the corresponding amino acid. However, some point mutations can have much more severe effects on the structure of the encoded protein, for example when they inactivate an exonic splicing enhancer (ESE), thereby resulting in exon skipping. ESEs also appear to be especially important in exons that normally undergo alternative splicing. Different classes of ESE consensus motifs have been described, but they are not always easily identified. ESEfinder (http://exon.cshl.edu/ESE/) is a web-based resource that facilitates rapid analysis of exon sequences to identify putative ESEs responsive to the human SR proteins SF2/ASF, SC35, SRp40 and SRp55, and to predict whether exonic mutations disrupt such elements.
Systemic lupus erythematosus (SLE; OMIM 1 152700) is a genetically
complex autoimmune disease. Genome-wide association studies (GWASs) have
identified more than 50 loci as robustly associated with the disease in single
ancestries, but genome-wide transancestral studies have not been conducted. We
combined three GWAS data sets from Chinese (1,659 cases and 3,398 controls) and
European (4,036 cases and 6,959 controls) populations. A meta-analysis of these
studies showed that over half of the published SLE genetic associations are
present in both populations. A replication study in Chinese (3,043 cases and
5,074 controls) and European (2,643 cases and 9,032 controls) subjects found ten
previously unreported SLE loci. Our study provides further evidence that the
majority of genetic risk polymorphisms for SLE are contained within the same
regions across both populations. Furthermore, a comparison of risk allele
frequencies and genetic risk scores suggested that the increased prevalence of
SLE in non-Europeans (including Asians) has a genetic basis.
Non-syndromic cleft lip with palate (NSCLP) is the most serious sub-phenotype of non-syndromic orofacial clefts (NSOFC), which are the most common craniofacial birth defects in humans. Here we conduct a GWAS of NSCLP with multiple independent replications, totalling 7,404 NSOFC cases and 16,059 controls from several ethnicities, to identify new NSCLP risk loci, and explore the genetic heterogeneity between sub-phenotypes of NSOFC. We identify 41 SNPs within 26 loci that achieve genome-wide significance, 14 of which are novel (RAD54B, TMEM19, KRT18, WNT9B, GSC/DICER1, PTCH1, RPS26, OFCC1/TFAP2A, TAF1B, FGF10, MSX1, LINC00640, FGFR1 and SPRY1). These 26 loci collectively account for 10.94% of the heritability for NSCLP in Chinese population. We find evidence of genetic heterogeneity between the sub-phenotypes of NSOFC and among different populations. This study substantially increases the number of genetic susceptibility loci for NSCLP and provides important insights into the genetic aetiology of this common craniofacial malformation.
The human major histocompatibility complex (MHC) region has been shown to be associated with numerous diseases. However, it remains a challenge to pinpoint the causal variants for these associations because of the extreme complexity of the region. We thus sequenced the entire 5-Mb MHC region in 20,635 individuals of Han Chinese ancestry (10,689 controls and 9,946 patients with psoriasis) and constructed a Han-MHC database that includes both variants and HLA gene typing results of high accuracy. We further identified multiple independent new susceptibility loci in HLA-C, HLA-B, HLA-DPB1 and BTNL2 and an intergenic variant, rs118179173, associated with psoriasis and confirmed the well-established risk allele HLA-C*06:02. We anticipate that our Han-MHC reference panel built by deep sequencing of a large number of samples will serve as a useful tool for investigating the role of the MHC region in a variety of diseases and thus advance understanding of the pathogenesis of these disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.