The effects of particle morphology on the structure and swelling/dissolution and rheological properties of nascent ultra-high molecular weight polyethylene (UHMWPE) in liquid paraffin (LP) were elaborately explored in this article. Nascent UHMWPE with different particle morphologies was prepared via pre-polymerization technique and direct polymerization. The melting temperature and crystallinity of UHMWPE resins with different particle morphologies were compared, and a schematic diagram was proposed to illustrate the mechanism of UHMWPE particle growth synthesized by pre-polymerization method and direct polymerization. The polymer globules in the nascent UHMWPE prepared by using pre-polymerization technique are densely packed and a positive correlation between the particle size and the viscosity-averaged molecular weight can be observed. The split phenomenon of particles and the fluctuation in the viscosity of UHMWPE/LP system prepared by direct polymerization can be observed at a low heating rate and there is no correlation between particle size and viscosity-averaged molecular weight.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.