Backgrund/Aims: Ischemia reperfusion (I/R) promotes the severity of cardiomyocyte injury. Long noncoding RNAs (LncRNAs) are key regulators in cardiovascular diseases. However, the association between LncRNAs and myocardial I/R injury has not been thoroughly characterized to date. We attempted to clarify the potential biological role of a LncRNA (E230034O05Rik), which we named hypoxia/reoxygenation (H/R) injury-related factor in myocytes (HRIM), by investigating the differential expression of LncRNAs between groups of myocytes exposed to either a normal level of oxygen or to H/R. Methods: Microarray analysis was used to determine analyze the global differential expression of LncRNAs in H9c2 myocytes exposed either to a normal level of oxygen or to H/R. Target LncRNA levels were further verified in vitro and ex vivo by real-time polymerase chain reaction (qPCR). Cell viability was analyzed using the Cell Counting Kit-8 assay. Autophagy levels were confirmed by Western blotting, transmission electron microscopy, and autophagic double-labeled (mRFP-GFP-LC3) adenovirus analyses. Results: Gene expression profiling revealed that 797 LncRNAs and 1898 mRNAs were differentially expressed in the H/R group compared with the normal oxygen group. Among these LncRNAs and mRNAs, 6 upregulated LncRNAs and 2 downregulated LncRNAs in the H/R group were selected and further validated by qPCR in vitro and ex vivo. Additionally, LncRNA-HRIM was inhibited by specific siRNAs in H9c2 myocytes exposed to H/R. The inhibition of LncRNA-HRIM by siRNA prevented cell death by suppressing excessive autophagic activity in myocytes, This finding suggests a detrimental role of LncRNA-HRIM in the regulation of I/R injury. Conclusions: LncRNAs are involved in H/R injury of H9c2 myocytes. Inhibition of LncRNA-HRIM increased cell viability by reducing autophagy in myocytes during H/R.
The rupture of atherosclerotic plaques may result in the formation of thrombi, which may induce subsequent cardiac events such as acute myocardial infarction. Overproduction of matrix metalloproteinases (MMPs) and extracellular matrix metalloproteinase inducers (EMMPRINs) by monocytes and macrophages may lead to rupture of atherosclerotic plaques as a result of the degradation of the extracellular matrix. The purinergic 2X7 receptor (P2X7R) is expressed in macrophages that are assembled in atherosclerotic lesions of human carotid arteries. P2X7R may serve a crucial role in the development of atherosclerosis; therefore, the present study aimed to determine whether P2X7R regulated the expression of EMMPRIN and MMP‑9 in phorbol 12‑myristate 13‑acetate (PMA)‑induced macrophages. In addition, the potential molecular mechanisms involved in this process were investigated. THP‑1 human monocytic cells were pretreated with A‑438079 (a specific inhibitor of P2X7R) for 1 h and subsequently incubated with or without PMA for 48 h. Exposure to A‑438079 significantly decreased the expression of MMP‑9 and EMMPRIN in the PMA‑induced macrophages and attenuated the activation (phosphorylation) of mitogen‑activated protein kinase (MAPK) signaling, including c‑Jun N‑terminal kinase, p38 and extracellular signal‑regulated kinase. The present study also demonstrated that 5'‑AMP‑activated protein kinase (AMPK) was activated by PMA exposure during differentiation from monocytes to macrophages. This activation was reversed by A‑438079 treatment through the inhibition of P2X7R expression. These results suggested that the inhibition of P2X7R may be able to suppress the AMPK/MAPK signaling pathway and consequently downregulate both EMMPRIN and MMP‑9 expression in PMA‑induced macrophages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.