By using ab initio calculations, we predict that a vertical electric field is able to open a band gap in semimetallic single-layer buckled silicene and germanene. The sizes of the band gap in both silicene and germanene increase linearly with the electric field strength. Ab initio quantum transport simulation of a dual-gated silicene field effect transistor confirms that the vertical electric field opens a transport gap, and a significant switching effect by an applied gate voltage is also observed. Therefore, biased single-layer silicene and germanene can work effectively at room temperature as field effect transistors.
In the applications of single-walled carbon nanotubes (SWNTs), it is extremely important to separate semiconducting and metallic SWNTs. Although several methods have been reported for the separation, only low yields have been achieved at great expense. We show a separation method involving a dispersion-centrifugation process in a tetrahydrofuran solution of amine, which makes metallic SWNTs highly concentrated to 87% in a simple way.
Interest in the two-dimensional MoS 2 material is consistently increasing because of its many potential applications, in particular in the next-generation nanoelectronic devices. By means of density functional theory computations, we systematically examined the effect of vertical electric field on the electronic structure of MoS 2 bilayer. The bandgaps of the bilayer MoS 2 monotonically decrease with an increasing vertical electric field. The critical electric fields, at which the semiconductor-to-metal transition occurs, are predicted to be in the range of 1.0−1.5 V/Å depending on different stacked conformations. Ab initio quantum transport simulations of a dualgated bilayer MoS 2 channel clearly confirm that the vertical electric field continuously manipulates the transmission gap of bilayer MoS 2 .
We report the electronic structure and optical properties of the recently synthesized stable two-dimensional carbon allotrope-graphdiyne based on first-principles calculations and experimental optical spectrum. Due to the enhanced Coulomb interaction in reduced dimensionality, the band gap of graphdiyne increases to 1.10 eV within the GW many-body theory from a 0.44 eV within the density functional theory. The optical absorption is dominated by excitonic effects with remarkable electron-hole binding energy of over 0.55 eV within the GW-Bethe Salpeter equation calculation. Experimental optical absorption of graphdiyne films is performed and comparison with the theoretical calculations is analyzed in detail.
Opening a sizable band gap without degrading its high carrier mobility is as vital for silicene as for graphene to its application as a high-performance field effect transistor (FET). Our density functional theory calculations predict that a band gap is opened in silicene by single-side adsorption of alkali atom as a result of sublattice or bond symmetry breaking. The band gap size is controllable by changing the adsorption coverage, with an impressive maximum band gap up to 0.50 eV. The ab initio quantum transport simulation of a bottom-gated FET based on a sodium-covered silicene reveals a transport gap, which is consistent with the band gap, and the resulting on/off current ratio is up to 108. Therefore, a way is paved for silicene as the channel of a high-performance FET.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.