Newly fabricated few-layer black phosphorus and its monolayer structure, phosphorene, are expected to be promising for electronic and optical applications because of their finite direct band gaps and sizable but anisotropic electronic mobility. By first-principles simulations, we show that this unique anisotropic free-carrier mobility can be controlled by using simple strain conditions. With the appropriate biaxial or uniaxial strain (4-6%), we can rotate the preferred conducting direction by 90°. This will be useful for exploring unusual quantum Hall effects and exotic electronic and mechanical applications based on phosphorene.
Thermoelectric devices that utilize the Seebeck effect convert heat flow into electrical energy and are highly desirable for the development of portable, solid state, passively powered electronic systems. The conversion efficiencies of such devices are quantified by the dimensionless thermoelectric figure of merit (ZT), which is proportional to the ratio of a device's electrical conductance to its thermal conductance. In this paper, a recently fabricated two-dimensional (2D) semiconductor called phosphorene (monolayer black phosphorus) is assessed for its thermoelectric capabilities. First-principles and model calculations reveal not only that phosphorene possesses a spatially anisotropic electrical conductance, but that its lattice thermal conductance exhibits a pronounced spatial-anisotropy as well. The prominent electrical and thermal conducting directions are orthogonal to one another, enhancing the ratio of these conductances. As a result, ZT may reach the criterion for commercial deployment along the armchair direction of phosphorene at T = 500 K and is close to 1 even at room temperature given moderate doping (∼2 × 10(16) m(-2) or 2 × 10(12) cm(-2)). Ultimately, phosphorene hopefully stands out as an environmentally sound thermoelectric material with unprecedented qualities. Intrinsically, it is a mechanically flexible material that converts heat energy with high efficiency at low temperatures (∼300 K), one whose performance does not require any sophisticated engineering techniques.
We predict enormous piezoelectric effects in intrinsic monolayer group IV monochalcogenides (MX, M=Sn or Ge, X=Se or S), including SnSe, SnS, GeSe and GeS.Using first-principle simulations based on the modern theory of polarization, we find that their piezoelectric coefficients are about one to two orders of magnitude larger than those of other 2D materials, such as MoS2 and GaSe, and bulk quartz and AlN which are widely used in industry. This enhancement is a result of the unique "puckered" C2v symmetry and weaker chemical bonds of monolayer group IV monochalcogenides. Given the achieved experimental advances in fabrication of monolayers, their flexible character and ability to withstand enormous strain, these 2D structures with giant piezoelectric effects may be promising for a broad range of applications, such as nano-sized sensors, piezotronics, and energy harvesting in portable electronic devices.
Ferroelectricity usually fades away when materials are thinned down below a critical value. Employing the first-principles density functional theory and modern theory of polarization, we show that the unique ionic-potential anharmonicity can induce spontaneous in-plane electrical polarizations and ferroelectricity in monolayer group-IV monochalcogenides MX (M=Ge, Sn; X=S, Se). Using Monte Carlo simulations with an effective Hamiltonian extracted from the parameterized energy space, we show these materials exhibit a two-dimensional ferroelectric phase transition that is described by fourth-order Landau theory. We also show the ferroelectricity in these materials is robust and the corresponding Curie temperature is higher than room temperature, making these materials promising for realizing ultrathin ferroelectric devices of broad interest.
For decades, two-dimensional electron gases (2DEG) have allowed important experimental discoveries and conceptual developments in condensed-matter physics. When combined with the unique electronic properties of two-dimensional crystals, they allow rich physical phenomena to be probed at the quantum level. Here, we create a 2DEG in black phosphorus--a recently added member of the two-dimensional atomic crystal family--using a gate electric field. The black phosphorus film hosting the 2DEG is placed on a hexagonal boron nitride substrate. The resulting high carrier mobility in the 2DEG allows the observation of quantum oscillations. The temperature and magnetic field dependence of these oscillations yields crucial information about the system, such as cyclotron mass and lifetime of its charge carriers. Our results, coupled with the fact that black phosphorus possesses anisotropic energy bands with a tunable, direct bandgap, distinguish black phosphorus 2DEG as a system with unique electronic and optoelectronic properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.