Summary• The lignin content of feedstock has been proposed as one key agronomic trait impacting biofuel production from lignocellulosic biomass. 4-Coumarate:coenzyme A ligase (4CL) is one of the key enzymes involved in the monolignol biosynthethic pathway.• Two homologous 4CL genes, Pv4CL1 and Pv4CL2, were identified in switchgrass (Panicum virgatum) through phylogenetic analysis. Gene expression patterns and enzymatic activity assays suggested that Pv4CL1 is involved in monolignol biosynthesis. Stable transgenic plants were obtained with Pv4CL1 downregulated.• RNA interference of Pv4CL1 reduced extractable 4CL activity by 80%, leading to a reduction in lignin content with decreased guaiacyl unit composition. Altered lignification patterns in the stems of RNAi transgenic plants were observed with phloroglucinol-HCl staining. The transgenic plants also had uncompromised biomass yields. After dilute acid pretreatment, the low lignin transgenic biomass had significantly increased cellulose hydrolysis (saccharification) efficiency.• The results demonstrate that Pv4CL1, but not Pv4CL2, is the key 4CL isozyme involved in lignin biosynthesis, and reducing lignin content in switchgrass biomass by silencing Pv4CL1 can remarkably increase the efficiency of fermentable sugar release for biofuel production.
ObjectiveGiven that cellular O-GlcNAcylation levels are thought to be real-time measures of cellular nutrient status and dysregulated O-GlcNAc signaling is associated with insulin resistance, we evaluated the role of O-GlcNAc transferase (OGT), the enzyme that mediates O-GlcNAcylation, in skeletal muscle.MethodsWe assessed O-GlcNAcylation levels in skeletal muscle from obese, type 2 diabetic people, and we characterized muscle-specific OGT knockout (mKO) mice in metabolic cages and measured energy expenditure and substrate utilization pattern using indirect calorimetry. Whole body insulin sensitivity was assessed using the hyperinsulinemic euglycemic clamp technique and tissue-specific glucose uptake was subsequently evaluated. Tissues were used for histology, qPCR, Western blot, co-immunoprecipitation, and chromatin immunoprecipitation analyses.ResultsWe found elevated levels of O-GlcNAc-modified proteins in obese, type 2 diabetic people compared with well-matched obese and lean controls. Muscle-specific OGT knockout mice were lean, and whole body energy expenditure and insulin sensitivity were increased in these mice, consistent with enhanced glucose uptake and elevated glycolytic enzyme activities in skeletal muscle. Moreover, enhanced glucose uptake was also observed in white adipose tissue that was browner than that of WT mice. Interestingly, mKO mice had elevated mRNA levels of Il15 in skeletal muscle and increased circulating IL-15 levels. We found that OGT in muscle mediates transcriptional repression of Il15 by O-GlcNAcylating Enhancer of Zeste Homolog 2 (EZH2).ConclusionsElevated muscle O-GlcNAc levels paralleled insulin resistance and type 2 diabetes in humans. Moreover, OGT-mediated signaling is necessary for proper skeletal muscle metabolism and whole-body energy homeostasis, and our data highlight O-GlcNAcylation as a potential target for ameliorating metabolic disorders.
BackgroundSwitchgrass (Panicum virgatum L.) is a prime candidate crop for biofuel feedstock production in the United States. As it is a self-incompatible polyploid perennial species, breeding elite and stable switchgrass cultivars with traditional breeding methods is very challenging. Translational genomics may contribute significantly to the genetic improvement of switchgrass, especially for the incorporation of elite traits that are absent in natural switchgrass populations.Methodology/Principal FindingsIn this study, we constitutively expressed an Arabidopsis NAC transcriptional factor gene, LONG VEGETATIVE PHASE ONE (AtLOV1), in switchgrass. Overexpression of AtLOV1 in switchgrass caused the plants to have a smaller leaf angle by changing the morphology and organization of epidermal cells in the leaf collar region. Also, overexpression of AtLOV1 altered the lignin content and the monolignol composition of cell walls, and caused delayed flowering time. Global gene-expression analysis of the transgenic plants revealed an array of responding genes with predicted functions in plant development, cell wall biosynthesis, and flowering.Conclusions/SignificanceTo our knowledge, this is the first report of a single ectopically expressed transcription factor altering the leaf angle, cell wall composition, and flowering time of switchgrass, therefore demonstrating the potential advantage of translational genomics for the genetic improvement of this crop.
Switchgrass (Panicum virgatum L.) seed dormancy is a major obstacle to successful establishment of this multi‐purpose species. We have investigated the influences of prolonged stratification, poststratification drying, restratification, and afterripening on germinability of ‘Cave‐in‐Rock’ switchgrass seeds. Germination can be increased many‐fold to ≥80% with 14 d of stratification, if the seeds are moved directly to germination without drying. However, we have found germinability (but not viability) may decrease by half or more if the stratified seeds are first dried and then rehydrated for germination testing. The reappearance of dormancy (secondary dormancy) during poststratification drying is herein called reversion During poststratification drying, dormancy reversion increased as the degree of desiccation increased. Extended stratification (for ≥42 d) prevented reversion. Afterripening also reduced the potential for reversion. Stratification and afterripening appeared to work additively to remove revertibility. Restratifying dried seeds showed that, while a drying interruption caused reversion, it also decreased the dormancy variability within a seedlot and shortened the total stratification time needed to obtain maximum germination compared with continuous stratification. Switchgrass seeds can be moved toward greater germinability by stratification, but drying following insufficient stratification can lead to dormancy reversion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.