As air traffic has been increasing in recent years, the environmental impact of aviation is more obvious, forcing governments to impose stringent regulations on emissions. In order to meet these regulations, and reduce the carbon footprint, research has been directed towards the all-electric and hybrid aircraft, where the use of cryogenic HTS machines and cables has been proposed to reduce the overall size of the aircraft. With the cryogenic system already in place, research has been exploring the use of power electronics at lower temperatures in order to obtain systems with higher power densities and lower losses. In this paper several power semiconductor devices are tested at room and cryogenic temperature in order to evaluate their performance at lower temperature. One of the tested devices, a "CoolMOS" superjunction MOSFET, is used in a single voltage source phase-leg which is experimented with at room and cryogenic temperature to evaluate its efficiency as a primary indication of its usefulness in the All-Electric Aircraft.
High-efficiency power converters have benefits of minimizing energy consumption, reducing costs, and realizing high power densities. The silicon super-junction MOSFET is an attractive device for high-efficiency applications. However, its highly non-linear output capacitance and the reverse recovery properties of its intrinsic diode must be addressed when used in voltage source converters. A dual-mode switching technique operating in conjunction with intrinsic diode deactivation circuitry is proposed in this paper. The technique is demonstrated in an 800-W inverter-leg configuration operating from a 400-V DC voltage rail and switching at 20 kHz. Intended applications include machine drives. The full-load efficiency reaches approximately 98.7% and no forced cooling is needed.
Commercial all-electric aircraft are projected to be flying as early as 2035, where hydrogen is selected to supply fuel and coolant. The cryogenic aircraft's powertrain includes the turbines, generators, power electronics and fan motors. As most of the powertrain is located at cryogenic temperature, it is preferable to co-locate the power electronics in the same region to reduce the engineering system's complexity. Silicon super-junction MOSFETs are known for their high efficiency, thus lower cooling requirements at cryogenic temperature. However, in phase-leg circuits, the behaviour of the MOSFET's intrinsic diode, and its output capacitance are challenging. These issues can be addressed by using the MOSFET with ancillary power devices to realise diode deactivation. This paper compares different permutations of intrinsic diode deactivation devices at room temperature and cryogenic temperature. The paper presents a demonstrator phase-leg built with different ancillary power devices. It is operated from a DC voltage of 270 V, and supplies a phase current of up to 10 A.
To increase the efficiency of renewable energy power conversion systems, traditional silicon IGBTs can be replaced with silicon super-junction MOSFETs. However, the poor performance of the MOSFET's intrinsic diode and the output capacitance present difficulties in voltage source converter bridge-legs. When a MOSFET in this circuit turns on, a charging current has to be sourced into the output capacitance of the complementary freewheeling MOSFET, even if the diode has been deactivated. The peak incoming drain current into the MOSFET turning on can be limited by using a large resistance in series with its gate. However, this increases MOSFET power dissipation. Also, the turn-on propagation delay time is increased. This paper presents a gate driver circuit for profiling the MOSFET's incoming drain current to provide an improved trade-off between incoming peak current, turn-on power dissipation, and delay time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.