Deep learning provides appropriate mechanisms to predict vessel trajectories for safer and efficient shipping, but still existing models are mainly oriented to longer-term prediction trends and do not fully support real time navigation needs. While most recent works have been largely exploiting Automatic Identification System (AIS), the complete semantics of these data haven't so far fully exploited. The research presented in this paper introduced an extended sequence-to-sequence model using AIS data. A Gated Recurrent Unit (GRU) network encodes historical spatio-temporal sequences as a context vector, which not only preserves the sequential relationships among trajectory locations, but also alleviates the gradient descent problem. The GRU network acts as a decoder, outputting target trajectory location sequences. Real AIS data from the Chongqing and Wuhan sections of the Yangzi River were selected as typical experimental areas for evaluation purposes. The proposed ST-Seq2Seq model has been tested against the LSTM-RNN and GRU-RNN baseline models for short term trajectory prediction experiments. A 10-minute historical trajectory sequence was used to predict the trajectory sequence for the next five minutes. Overall, the findings show that LSTM and GRU networks, while applying a recursive method to predict a sequence of continuous trajectory points, when the number of predicted trajectory points increases accuracy decreases. Conversely, the extended sequence-to-sequence model shows satisfactory stability on different ship channels.
Background The biomedical literature is growing rapidly, and it is increasingly important to extract meaningful information from the vast amount of literature. Biomedical named entity recognition (BioNER) is one of the key and fundamental tasks in biomedical text mining. It also acts as a primitive step for many downstream applications such as relation extraction and knowledge base completion. Therefore, the accurate identification of entities in biomedical literature has certain research value. However, this task is challenging due to the insufficiency of sequence labeling and the lack of large-scale labeled training data and domain knowledge. Results In this paper, we use a novel word-pair classification method, design a simple attention mechanism and propose a novel architecture to solve the research difficulties of BioNER more efficiently without leveraging any external knowledge. Specifically, we break down the limitations of sequence labeling-based approaches by predicting the relationship between word pairs. Based on this, we enhance the pre-trained model BioBERT, through the proposed prefix and attention map dscrimination fusion guided attention and propose the E-BioBERT. Our proposed attention differentiates the distribution of different heads in different layers in the BioBERT, which enriches the diversity of self-attention. Our model is superior to state-of-the-art compared models on five available datasets: BC4CHEMD, BC2GM, BC5CDR-Disease, BC5CDR-Chem, and NCBI-Disease, achieving F1-score of 92.55%, 85.45%, 87.53%, 94.16% and 90.55%, respectively. Conclusion Compared with many previous various models, our method does not require additional training datasets, external knowledge, and complex training process. The experimental results on five BioNER benchmark datasets demonstrate that our model is better at mining semantic information, alleviating the problem of label inconsistency, and has higher entity recognition ability. More importantly, we analyze and demonstrate the effectiveness of our proposed attention.
Taxi waiting times is an important criterion for taxi passengers to choose appropriate pick-up locations in urban environments. How to predict the taxi waiting time accurately at a certain time and location is the key solution for the imbalance between the taxis’ supplies and demands. Considering the life schedule of urban residents and the different functions of geogrid regions, the research developed in this paper introduces a spatio-temporal schedule-based neural network for urban taxi waiting time prediction. The approach integrates a series of multi-source data from taxi trajectories to city points of interest, different time frames and human behaviors in the city. We apply a grid-based and functional structuration of an urban space that provides a lower-level data representation. Overall, the neural network model can dynamically predict the waiting time of taxi passengers in real time under some given spatio-temporal constraints. The experimental results show that the granular-based grids and spatio-temporal neural network can effectively predict and optimize the accuracy of taxi waiting times. This work provides a decision support for intelligent travel predictions of taxi waiting time in a smart city.
This paper describes our contribution to SemEval-2021 Task 7:Detecting and Rating Humor and Offense.This task contains two sub-tasks, sub-task 1 and sub-task 2. Among them, sub-task 1 contains three sub-tasks, sub-task 1a ,sub-task 1b and sub-task 1c.Sub-task 1a is to predict if the text would be considered humorous.Subtask 1c is described as follows: if the text is classed as humorous, predict if the humor rating would be considered controversial, i.e. the variance of the rating between annotators is higher than the median.we combined three pre-trained model with CNN to complete these two classification sub-tasks.Sub-task 1b is to judge the degree of humor.Sub-task 2 aims to predict how offensive a text would be with values between 0 and 5.We use the idea of regression to deal with these two sub-tasks.We analyze the performance of our method and demonstrate the contribution of each component of our architecture.We have achieved good results under the combination of multiple pre-training models and optimization methods.
This paper proposes a new method for selecting iconic papers. We use chapter structure recognition technology and combine it with popular deep learning models to identify the chapter structure of the papers. Based on this identification result, we calculate the sum of the number of times each paper is mentioned in all articles, to discover iconic papers with high mention frequency. We focus on the "Method" and "Conclusion" sections to find papers that are frequently mentioned in these two sections and determine iconic papers. With this method, we can more accurately discover and evaluate important research results and provide more valuable references for scholars in related fields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.