Activation of the B-cell antigen receptor (BCR) signaling pathway contributes to the initiation and maintenance of B-cell malignancies and autoimmune diseases. The Bruton tyrosine kinase (Btk) is specifically required for BCR signaling as demonstrated by human and mouse mutations that disrupt Btk function and prevent B-cell maturation at steps that require a functional BCR pathway. Herein we describe a selective and irreversible Btk inhibitor, PCI-32765, that is currently under clinical development in patients with B-cell nonHodgkin lymphoma. We have used this inhibitor to investigate the biologic effects of Btk inhibition on mature B-cell function and the progression of B cell-associated diseases in vivo. PCI-32765 blocked BCR signaling in human peripheral B cells at concentrations that did not affect T cell receptor signaling. In mice with collagen-induced arthritis, orally administered PCI-32765 reduced the level of circulating autoantibodies and completely suppressed disease. PCI-32765 also inhibited autoantibody production and the development of kidney disease in the MRL-Fas(lpr) lupus model. Occupancy of the Btk active site by PCI-32765 was monitored in vitro and in vivo using a fluorescent affinity probe for Btk. Active site occupancy of Btk was tightly correlated with the blockade of BCR signaling and in vivo efficacy. Finally, PCI-32765 induced objective clinical responses in dogs with spontaneous B-cell non-Hodgkin lymphoma. These findings support Btk inhibition as a therapeutic approach for the treatment of human diseases associated with activation of the BCR pathway.lymphoma | X-linked agammaglobulinemia
Induction of protein degradation is emerging as a powerful strategy to modulate protein functions and alter cellular signaling pathways. Proteolysis-targeting chimeras (PROTACs) have been used to degrade a range of diverse proteins in vitro and in vivo. Here we present a type of photo-caged PROTACs (pc-PROTACs) to induce degradation activity with light. Photo-removable blocking groups were added to a degrader of Brd4, and the resulting molecule pc-PROTAC1 showed potent degradation activity in live cells only after light irradiation. Furthermore, this molecule efficiently degraded Brd4 and induced expected phenotypic changes in zebrafish. Additionally, this approach was successfully applied to construct pc-PROTAC3 of BTK. Thus, a general strategy to induce protein degradation with light was established to augment the chemists' toolbox to study disease-relevant protein targets. Communication pubs.acs.org/JACS
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.