In this article, we demonstrate a simple solvothermal method towards in situ growth of hierarchical CoFe2O4 nanoclusters on graphene aerogels (GAs). SEM and TEM results confirm that CoFe2O4 nanoclusters are well wrapped by the graphene skeleton. As an anode material for lithium-ion batteries, the CoFe2O4/GAs composite displays a stable cycling performance with a reversible capacity of over 100 discharge/charge cycles at the current density of 0.1 A g(-1), considerably higher than that of CoFe2O4 nanoclusters. Moreover, the reversible capacity of the CoFe2O4/GAs composite exhibits 966 mA h g(-1) after 300 cycles even at a high current density of 0.5 A g(-1). Most important of all, a new CoFe2O4/GAs//LiCoO2 full cell was successfully assembled, and this exhibited excellent electrochemical performance. The superior electrochemical performance of the CoFe2O4/GAs composite in half and full cells can be attributed to the synergistic interaction between the uniform CoFe2O4 nanoclusters and GAs, the high electrical conductivity, and the three-dimensional hierarchically porous structure, which can not only facilitate the diffusion of Li ions and electrolyte into the electrodes, but also prevent volume expansion/contraction upon prolonged discharge/charge cycling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.