Oxidative stress (OS) reactions are reported to be associated with oncogenesis and tumor progression. However, little is known about the potential diagnostic value of OS in gastric cancer (GC). This study identified hub OS genes associated with the prognosis and progression of GC and illustrated the underlying mechanisms. The transcriptome data and corresponding GC clinical information were collected from The Cancer Genome Atlas (TCGA) database. Aberrantly expressed OS genes between tumors and adjacent normal tissues were screened, and 11 prognosis-associated genes were identified with a series of bioinformatic analyses and used to construct a prognostic model. These genes were validated in the Gene Expression Omnibus (GEO) database. Furthermore, weighted gene co-expression network analysis (WGCNA) was subsequently conducted to identify the most significant hub genes for the prediction of GC progression. Analysis revealed that a good prognostic model was constructed with a better diagnostic accuracy than other clinicopathological characteristics in both TCGA and GEO cohorts. The model was also significantly associated with the overall survival of patients with GC. Meanwhile, a nomogram based on the risk score was established, which displayed a favorable discriminating ability for GC. In the WGCNA analysis, 13 progression-associated hub OS genes were identified that were also significantly associated with the progression of GC. Furthermore, functional and gene ontology (GO) analyses were performed to reveal potential pathways enriched with these genes. These results provide novel insights into the potential applications of OS-associated genes in patients with GC.
Background Cutaneous melanoma (CM) is a life-threatening destructive malignancy. Pyroptosis significantly correlates with programmed tumor cell death and its microenvironment through active host-tumor crosstalk. However, the prognostic value of pyroptosis-associated gene signatures in CM remains unclear. Methods Gene profiles and clinical data of patients with CM were downloaded from The Cancer Genome Atlas (TCGA) to identify differentially expressed genes associated with pyroptosis and overall survival (OS). We constructed a prognostic gene signature using LASSO analysis, then applied immune cell infiltration scores and Kaplan-Meier, Cox, and pathway enrichment analyses to determine the roles of the gene signature in CM. A validation cohort was collected from the Gene Expression Omnibus (GEO) database. Results Four pyroptosis-associated genes were identified and incorporated into a prognostic gene signature. Integrated bioinformatics findings showed that the signature correlated with patient survival and was associated with tumor growth and metastasis. The results of Gene Set Enrichment Analysis of a risk signature indicated that several enriched pathways are associated with cancer and immunity. The risk signature for immune status significantly correlated with tumor stem cells, the immune microenvironment, immune cell infiltration and immune subtypes. The expression of four pyroptosis genes significantly correlated with the OS of patients with CM and was related to the sensitivity of cancer cells to several antitumor drugs. A signature comprising four genes associated with pyroptosis offers a novel approach to the prognosis and survival of patients with CM and will facilitate the development of individualized therapy.
Osteoarthritis (OA) is a degenerative disease of the cartilage prevalent in the middleaged and elderly demographic. Direct transplantation of bone marrow mesenchymal stem cells (BMSCs) or stem cell-derived chondrocytes into the damaged cartilage is a promising therapeutic strategy for OA, but is limited by the poor survival and in situ stability of the chondrocytes. Autophagy is a unique catabolic pathway conserved across eukaryotes that maintains cellular homeostasis, recycles damaged proteins and organelles, and promotes survival. The aim of this study was to determine the role of the proautophagic γ-aminobutyric acid receptor-associated protein (GABAR-AP) on the therapeutic effects of BMSCs-derived chondrocytes in a rat model of OA, and elucidate the underlying mechanisms. Anterior cruciate ligament transection (ACLT) was performed in Sprague-Dawley rats to simulate OA, and the animals were injected weekly with recombinant human His6-GABARAP protein, BMSCs-derived differentiated chondrocytes (DCs) or their combination directly into the knee cartilage. The regenerative effects of GABARAP and/or DCs were determined in term of International Cartilage Repair Society scores and cartilage thickness. The combination treatment of DCs and GABARAP significantly increased the levels of the ECM proteins Col II and SOX9, indicating formation of hyaline-like cartilage, and decreased chondrocyte apoptosis and inflammation. DCs + GABARAP treatment also upregulated the mediators of the autophagy pathway and suppressed the PI3K/AKT/ mTOR pathway, indicating a mechanistic basis of its therapeutic action.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.