BackgroundThe abnormal expression of lncRNA LINC00466 (LINC00466) has been demonstrated in several tumor types. However, the expression pattern and functions of LINC00466 in glioma remain uninvestigated.MethodsA reverse transcriptase‐polymerase chain reaction (RT‐PCR) was utilized to analyze LINC00466 in human glioma tissues and cell lines. Luciferase reporter assays were performed to explore whether YY1 could bind to the promoter region of LINC00466. Cell counting kit‐8, flow cytometry, colony‐formation, transwell migration and invasion assays were carried out to determine the involvement of INC00466 in glioma. Luciferase assays and pulldown assays were conducted to verify the binding sites.ResultsWe report that LINC00466 expression is increased in glioma cells and tissues. YY1 transcription factor (YY1) can bind directly to the LINC00466 promoter region. Clinical studies revealed that the elevated expression of LINC00466 is closely correlated with an advanced World Health Organization grade (p = 0.008), Karnofsky Performance Status score (p = 0.004) and a short overall survival (p = 0.0035) of glioma patients. Functional assays revealed that LINC00466 knockdown distinctly suppresses glioma cell proliferation, migration, invasion and epithelial–mesenchymal progress, and also promotes apoptosis. Moreover, dual‐luciferase reporter assays indicated that LINC00466 acts as an endogenous sponge via binding to miR‐508 and decreasing its expression. Luciferase assays and RT‐PCR assays demonstrated that checkpoint kinase 1 (CHEK1) is a target of miR‐508, and LINC00466 modulates CHEK1 levels by competing for miR‐508. LINC00466 may exhibit its anti‐oncogenic roles through targeting the miR‐508/CHEK1 axis.ConclusionsOur findings identified a novel glioma‐related long non‐coding RNA, LINC00466, which may provide a potential novel prognostic and therapeutic target for glioma.
Background and Aim. Alzheimer’s disease (AD) is a common neurological disorder worldwide. In traditional Chinese medicine (TCM), Acori Tatarinowii Rhizoma (ATR) and Codonopsis Radix (CR) are common herbs used to treat AD. However, due to the many active ingredients and targets in these herbs, it is difficult to clarify the synergistic mechanism of ATR and CR. To reveal the multicomponent synergistic mechanism of ATR and CR in Alzheimer’s disease, we analyzed important components, drug targets, and crucial pathways using a systems pharmacology strategy. Materials and Methods. In this study, a systems pharmacology-based strategy was used to elucidate the synergistic mechanism of Acori Tatarinowii Rhizoma and Codonopsis Radix for the treatment of AD. This novel systems pharmacology model consisted of component information, pharmacokinetic analysis, and pharmacological data. Additionally, the related pathways were compressed using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, and the organ distributions were determined in the BioGPS bank. Results. Sixty-eight active ingredients with suitable pharmacokinetic profiles and biological activities were selected through ADME screening in silico. Based on 62 AD-related targets, such as APP, CHRM1, and PTGS1, systematic analysis showed that these two herbs were mainly involved in the PI3K-Akt signaling pathway, MAPK signaling pathway, neuroactive ligand-receptor interaction, and fluid shear stress and atherosclerosis, indicating that they had a synergistic effect on AD. However, ATR acted on the KDR gene, while CR acted on IGF1R, MET, IL1B, and CHUK, showing that they also had complementary effects on AD. The ingredient contribution score involved 29 ingredients contributing 90.14% of the total contribution score of this formula for AD treatment, which emphasized that the effective therapeutic effects of these herbs for AD were derived from both ATR and CR, not a single herb. Organ distribution showed that the targets of the active ingredients were mainly located in the whole blood, the brain, and the muscle, which are associated with AD. Conclusions. In sum, our findings suggest that the systems pharmacology methods successfully revealed the synergistic and complementary mechanisms of ATR and CR for the treatment of AD.
Despite the recent progress of lung adenocarcinoma (LUAD) therapy, tumor recurrence remained to be a challenging factor that impedes the effectiveness of treatment. The objective of the present study was to predict the hub genes affecting LUAD recurrence via weighted gene co-expression network analysis (WGCNA). Microarray samples from LUAD dataset of GSE32863 were analyzed, and the modules with the highest correlation to tumor recurrence were selected. Functional enrichment analysis was conducted, followed by establishment of a protein–protein interaction (PPI) network. Subsequently, hub genes were identified by overall survival analyses and further validated by evaluation of expression in both myeloid populations and tissue samples of LUAD. Gene set enrichment analysis (GSEA) was then carried out, and construction of transcription factors (TF)–hub gene and drug–hub gene interaction network was also achieved. A total of eight hub genes (ACTR3, ARPC5, RAB13, HNRNPK, PA2G4, WDR12, SRSF1, and NOP58) were finally identified to be closely correlated with LUAD recurrence. In addition, TFs that regulate hub genes have been predicted, including MYC, PML, and YY1. Finally, drugs including arsenic trioxide, cisplatin, Jinfukang, and sunitinib were mined for the treatment of the eight hub genes. In conclusion, our study may facilitate the invention of targeted therapeutic drugs and shed light on the understanding of the mechanism for LUAD recurrence.
Background The lung is one of the most frequent distant metastasis sites in colorectal cancer (CRC) patients; however, lung metastasis risk and prognostic factors have not been comprehensively elucidated. This study aimed to identify the homogeneous and heterogeneous lung metastasis risk and prognostic factors in CRC patients using the Surveillance, Epidemiology, and End Results (SEER) database. Methods CRC patients registered in the SEER database between 2010 and 2016 were included to analyse risk factors for developing lung metastasis by using univariable and multivariable logistic regression. Patients diagnosed between 2010 and 2015 were selected to investigate prognostic factors for lung metastasis by conducting Cox regression. Kaplan–Meier analysis was used to estimate overall survival outcomes. Results A total of 10,598 (5.2%) patients with synchronous lung metastasis were diagnosed among 203,138 patients with CRC. The median survival time of patients with lung metastasis was 10.0 months (95% CI 9.6–10.5 months). Older age, unmarried status, uninsured status, poor histological differentiation, more lymphatic metastasis, CEA positivity, liver metastasis, bone metastasis and brain metastasis were lung metastasis risk and prognostic factors. Black patients and those with left colon, rectum, and stage T4 disease were more likely to develop lung metastasis, while patients with right colon cancer and no surgical treatment of the primary tumour had poor survival outcomes. Conclusion The incidence of lung metastasis in CRC patients was 5.2%. CRC patients with lung metastasis exhibited homogeneous and heterogeneous risk and prognostic factors. These results are helpful for clinical evaluation and individual treatment decision making.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.