Spaceflight leads to health risks including bone demineralization, skeletal muscle atrophy, cardiovascular dysfunction, and disorders of almost all physiologic systems. However, the impacts of microgravity on blood lineage cells and hematopoietic stem cells (HSCs) in vivo are largely unknown. In this study, we analyzed peripheral blood samples from 6 astronauts who had participated in spaceflight missions and found significant changes in several cell populations at different time points. These dynamic alterations of lineage cells and the role of HSCs were further studied in a mouse model, using hindlimb unloading (HU) to simulate microgravity. Large reductions in the frequency of NK cells, B cells, and erythrocyte precursors in the bone marrow of the HU mice were observed, together with an increased frequency of T cells, neutrophils, and HSCs. T cell levels recovered faster than those of B cells and erythrocyte precursors, whereas the recovery rates of NK cells and granulocytes were slow. In addition, competitive reconstitution experiments demonstrated the impaired function of HSCs, although these changes were reversible. Deep sequencing showed changes in the expression of regulatory molecules important for the differentiation of HSCs. This study provides the first determination of altered HSC function under simulated microgravity in vivo. The impairment of HSC function and differentiation provides an explanation for the immune disorders that occur under simulated microgravity. Thus, our findings demonstrated that spaceflight and simulated microgravity disrupt the homeostasis of immune system and cause dynamic alterations on both HSCs and lineage cells.—Cao, D., Song, J., Ling, S., Niu, S., Lu, L., Cui, Z., Li, Y., Hao, S., Zhong, G., Qi, Z., Sun, W., Yuan, X., Li, H., Zhao, D., Jin, X., Liu, C., Wu, X., Kan, G., Cao, H., Kang, Y., Yu, S., Li, Y. Hematopoietic stem cells and lineage cells undergo dynamic alterations under microgravity and recovery conditions. FASEB J. 33, 6904–6918 (2019). http://www.fasebj.org
Hematopoietic stem cells (HSCs) have the capacity for self‐renewal to maintain the HSCs' pool and the ability for multilineage differentiation, which are responsible for sustained production of multiple blood lineages. The regulation of HSC development is controlled precisely by complex signal networks and hematopoietic microenvironment, which has been termed the HSCs' niche. The Wnt signaling pathway is one of a variety of signaling pathways that have been involved in HSC self‐renewal and maintenance. Previous studies are indeterminant on the regulation of adult HSCs upon canonical Wnt signaling pathways because of the different experimental systems and models used. In this study, we generated the conditional knockout Wnt coreceptor low‐density lipoprotein receptor‐related protein 5 (Lrp5) and low‐density lipoprotein receptor‐related protein 6 (Lrp6) mice in adult hematopoiesis via Vav‐Cre Loxp system. Inactivation of Lrp5 and ‐6 in a hematopoietic system diminished the pool of HSCs, but there were no obvious defects in mature immune cells. Lrp5 and ‐6 double deficiency HSCs showed intrinsic defects in self‐renewal and differentiation due to reduced proliferation and increased quiescence of the cell cycle. Analysis of HSC gene expression suggested that the quiescence regulators were significantly up‐regulated, such as Egr1, Cdkn1a, Nr4a1, Gata2, Junb and Btg2, and the positive cell cycle regulators were correspondingly down‐regulated, such as Ccna2 and Ranbp1. Taken together, we investigated the roles of Lrp5 and ‐6 in HSCs by functional and bioinformatic assays, and we demonstrated that Lrp5 and ‐6 are required for the self‐renewal and differentiation of adult HSCs. The canonical Wnt pathway may contribute to maintaining the HSC pool and regulate the differentiation of adult HSCs by controlling cell cycle gene regulatory module.—Liu, J., Cui, Z., Wang, F., Yao, Y., Yu, G., Liu, J., Cao, D., Niu, S., You, M., Sun, Z., Lian, D., Zhao, T., Kang, Y., Zhao, Y., Xue, H.‐H., Yu, S. Lrp5 and Lrp6 are required for maintaining self‐renewal and differentiation of hematopoietic stem cells. FASEB J. 33, 5615–5625 (2019). http://www.fasebj.org
Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most devastating pathogens in the swine industry worldwide. Due to the lack of robust cell lines and small animal models, the pathogenesis of PRRSV infection and mechanism for protective vaccination are still not yet well understood. To obtain useful cell lines, several groups have attempted to construct different transgenic cell lines with three PRRSV receptors: CD163, CD169, and CD151. The results showed that CD163 is essential for PRRSV entry into target cells and replication, and both CD169 and CD151 play key roles during PRRSV infection. However, their interplay and combined effect remains unclear. In this study, we generated transgenic BHK-21 derived cell lines co-expressing different combinations of the three receptors, which were transfected with CD163 alone, or the combination of CD163 and CD169, or the combination of CD163 and CD151, or the combination of CD163, CD169, and CD151 using the PiggyBac transposon system. Our results showed that the synergistic interaction among the three receptors was important to improve the susceptibility of cells during PRRSV infection. Through a series of comparable analyses, we confirmed that the cell line co-expressing triple receptors sustained viral infection and replication, and was superior to the current cell platform used for the PRRSV study, MARC-145 cells. Moreover, we found that PRRSV infection of the transgenic cell lines could trigger IFN-stimulated gene responses similar to those of porcine alveolar macrophages and MARC-145 cells. In summary, we developed a stable transgenic cell line susceptible to PRRSV, which may not only provide a useful tool for virus propagation, vaccine development, and pathogenesis studies, but also establish the foundation for small animal model development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.