An improved method for the preparation of graphene oxide (GO) is described. Currently, Hummers' method (KMnO(4), NaNO(3), H(2)SO(4)) is the most common method used for preparing graphene oxide. We have found that excluding the NaNO(3), increasing the amount of KMnO(4), and performing the reaction in a 9:1 mixture of H(2)SO(4)/H(3)PO(4) improves the efficiency of the oxidation process. This improved method provides a greater amount of hydrophilic oxidized graphene material as compared to Hummers' method or Hummers' method with additional KMnO(4). Moreover, even though the GO produced by our method is more oxidized than that prepared by Hummers' method, when both are reduced in the same chamber with hydrazine, chemically converted graphene (CCG) produced from this new method is equivalent in its electrical conductivity. In contrast to Hummers' method, the new method does not generate toxic gas and the temperature is easily controlled. This improved synthesis of GO may be important for large-scale production of GO as well as the construction of devices composed of the subsequent CCG.
Monolayer graphene was first obtained as a transferable material in 2004 and has stimulated intense activity among physicists, chemists and material scientists. Much research has been focused on developing routes for obtaining large sheets of monolayer or bilayer graphene. This has been recently achieved by chemical vapour deposition (CVD) of CH(4) or C(2)H(2) gases on copper or nickel substrates. But CVD is limited to the use of gaseous raw materials, making it difficult to apply the technology to a wider variety of potential feedstocks. Here we demonstrate that large area, high-quality graphene with controllable thickness can be grown from different solid carbon sources-such as polymer films or small molecules-deposited on a metal catalyst substrate at temperatures as low as 800 °C. Both pristine graphene and doped graphene were grown with this one-step process using the same experimental set-up.
In this research, we constructed a controlled chamber pressure CVD (CP-CVD) system to manipulate graphene's domain sizes and shapes. Using this system, we synthesized large (~4.5 mm(2)) single-crystal hexagonal monolayer graphene domains on commercial polycrystalline Cu foils (99.8% purity), indicating its potential feasibility on a large scale at low cost. The as-synthesized graphene had a mobility of positive charge carriers of ~11,000 cm(2) V(-1) s(-1) on a SiO(2)/Si substrate at room temperature, suggesting its comparable quality to that of exfoliated graphene. The growth mechanism of Cu-based graphene was explored by studying the influence of varied growth parameters on graphene domain sizes. Cu pretreatments, electrochemical polishing, and high-pressure annealing are shown to be critical for suppressing graphene nucleation site density. A pressure of 108 Torr was the optimal chamber pressure for the synthesis of large single-crystal monolayer graphene. The synthesis of one graphene seed was achieved on centimeter-sized Cu foils by optimizing the flow rate ratio of H(2)/CH(4). This work should provide clear guidelines for the large-scale synthesis of wafer-scale single-crystal graphene, which is essential for the optimized graphene device fabrication.
An improved method is described for the production of graphene oxide nanoribbons (GONRs) via longitudinal unzipping of multiwalled carbon nanotubes. The method produces GONRs with fewer defects and/or holes on the basal plane, maintains narrow ribbons <100 nm wide, and maximizes the high aspect ratio. Changes in the reaction conditions such as acid content, time, and temperature were investigated. The new, optimized method which introduces a second, weaker acid into the system, improves the selectivity of the oxidative unzipping presumably by in situ protection of the vicinal diols formed on the basal plane of graphene during the oxidation, and thereby prevents their overoxidation and subsequent hole generation. The optimized GONRs exhibit increased electrical conductivity over those chemically reduced nanoribbons produced by previously reported procedures.
Graphene and single-walled carbon nanotubes are carbon materials that exhibit excellent electrical conductivities and large specific surface areas. Theoretical work suggested that a covalently bonded graphene/single-walled carbon nanotube hybrid material would extend those properties to three dimensions, and be useful in energy storage and nanoelectronic technologies. Here we disclose a method to bond graphene and single-walled carbon nanotubes seamlessly during the growth stage. The hybrid material exhibits a surface area 42,000 m 2 g À 1 with ohmic contact from the vertically aligned single-walled carbon nanotubes to the graphene. Using aberration-corrected scanning transmission electron microscopy, we observed the covalent transformation of sp 2 carbon between the planar graphene and the single-walled carbon nanotubes at the atomic resolution level. These findings provide a new benchmark for understanding the three-dimensional graphene/ single-walled carbon nanotube-conjoined materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.