With the improved understanding of the molecular pathogenesis and characteristics of cancers, the critical role of the immune system in preventing tumor development has been widely accepted. The understanding of the relationship between the immune system and cancer progression is constantly evolving, from the cancer immunosurveillance hypothesis to immunoediting theory and the delicate balance in the tumor microenvironment. Currently, immunotherapy is regarded as a promising strategy against cancers. Although adoptive cell therapy (ACT) has shown some exciting results regarding the rejection of tumors, the effect is not always satisfactory. Cellular therapy with CD4 + T cells remains to be further explored since the current ACT is mainly focused on CD8 + cytotoxic T lymphocytes (CTLs). Recently, Th9 cells, a subgroup of CD4 + T helper cells characterized by the secretion of IL-9 and IL-10, have been reported to be effective in the elimination of solid tumors and to exhibit superior antitumor properties to Th1 and Th17 cells. In this review, we summarize the most recent advances in the understanding of Th9 cell differentiation and the dual role, both anti-tumor and pro-tumor effects, of Th9 cells in tumor progression.
Human papilloma virus (HPV) has been detected in some upper aerodigestive tract tumors, but the correlation between HPV and these tumors is not well understood. There is also some controversy regarding this correlation because a large variation in the prevalence of HPV in these tumors has been reported. To discuss the impact of HPV infection on upper aerodigestive tract tumors, this review estimated systematically the prevalence and risk of HPV in upper aerodigestive tract tumors from studies published between 1982 and 2012. In total, 418 articles were selected, which included 273 studies on the head and neck and 145 studies on esophageal squamous cell carcinoma. The overall prevalence of HPV in the 5,467 head and neck squamous cell carcinoma specimens was 36.3%. HPV was detected more frequently in the Americas (40%), than in Asia (38.6%), Europe (32%), or others regions (30.5%). The prevalence of HPV was significantly higher in oropharyngeal (48.5%) than in oral (32.5%), laryngeal (30.7%), and unselected head and neck squamous cell carcinoma (33.3%) (P < 0.001). The pooled prevalence of HPV in the 6,912 esophageal squamous cell carcinoma cases was 38.9% and it was significantly higher in China (44%) versus other regions (31.3%) (P < 0.05). Meta-analysis showed that head and neck and esophageal squamous cell carcinoma are associated with HPV infection (combined OR: 3.58, OR for head and neck and esophageal squamous cell carcinoma: 4.20). These findings suggest that HPV might be linked etiologically to the development of some upper aerodigestive tract tumors.
Photothermal therapy (PTT) and photodynamic therapy (PDT) have emerged as highly prospective therapeutic modalities in cancer therapy. Notwithstanding, a critical challenge still remains in the exploration of an effective strategy to maximize the synergistic efficacy of PTT and PDT due to low photoconversion efficiency. Herein, inspired by the phospholipid bimolecular structure of the cell membrane, bionic cell membrane polymeric vesicles with photothermal/photodynamic synergy for prostate cancer therapy at one wavelength’s excitation are constructed in one step by the coordination of hexadecyl trimethyl ammonium bromide (CTAB) from the surface of hydrophobic gold nanorods (AuNRs) with indocyanine green (ICG) and polycaprolactone (PCL), achieving their self-assembly in aqueous solutions. Importantly, the aggregation of the assembly improves the stability of the vesicles, realizing the synergistic effect of PTT and PDT for prostate cancer therapy. After being assembled within polymeric vesicles, bifunctional photosensitizer ICG can generate reactive oxygen species (ROS) and photothermal effect under light treatment. Their ROS not only induce PDT efficacy but also destroy the integrity of the lysosomal membrane, promoting the translocation of ICG and another photosensitizer called gold nanorods (AuNRs) into the cytosol. Moreover, their photothermal effects produced by both photosensitizers are able to engender greater damage to the tumor cells because of the close distance with organelles. This structure manifests good cellular uptake, highly effective tumor accumulation, high photothermal conversion efficiency, and excellent properties of enhanced photobleaching resistance, which are beneficial to ICG-based fluorescence tumor imaging. Using the same near-infrared (NIR) wavelength for excitation, the AuNR/ICG vesicles can reduce the side effect rate of photodamage on the skin. In addition, by generating reactive oxygen species (ROS) and double photothermal effect, the vesicles under NIR excitation can promote the apoptosis of PC3 tumor cells. Taken together, the spontaneous self-assembled AuNR/ICG vesicles exhibit huge potential in advanced-stage prostate cancer therapy, especially for the prostate-specific membrane antigen (PSMA)-negative castration-resistant subtype.
Osteoarthritis (OA) is a widespread chronic degenerative joint disease characterized by the degeneration of articular cartilage or inflamed joints. Our findings indicated that treatment with artemisinin (AT) downregulates the protein levels of MMP3, MMP13, and ADAMTS5, which are cartilage degradation-related proteins in OA, and inhibits the expression of inflammatory factors in interleukin-1β (IL-1β)-stimulated chondrocytes. However, the mechanism of the role of AT in OA remains unclear. Here, we performed gene sequencing and bioinformatics analysis in control, OA, and OA + AT groups to demonstrate that several mRNA candidates were enriched in the PI3K/AKT/mTOR signaling pathway, and TNFSF11 was significantly downregulated after AT treatment. TNFSF11 was downregulated in the OA + AT group, whereas it was upregulated in rat OA tissues and OA chondrocytes. Therefore, we confirmed that TNFSF11 was the target gene of AT. In addition, our study revealed that AT relieved cartilage degradation and defection by activating mitochondrial autophagy via inhibiting the PI3K/AKT/mTOR signaling pathway in IL-1β-induced chondrocytes. Furthermore, an OA model was established in rats with medial meniscus destabilization. Injecting AT into the knee joints of OA rat alleviated surgical resection-induced cartilage destruction. Thus, these findings revealed that AT relieves OA by activating mitochondrial autophagy by reducing TNFSF11 expression and inhibiting PI3K/AKT/mTOR signaling.
The aim of this study was to determine the effect of HDAC6 inhibition using the selective inhibitor Tubastatin A (TubA) on the regulation of tert-butyl hydroperoxide (TBHP)-treated chondrocytes and a mouse OA model. Using conventional molecular biology methods, our results showed that the level of HDAC6 increases both in the cartilage of osteoarthritis (OA) mice and TBHP-treated chondrocytes in vitro . TubA treatment effectively inhibits the expression of HDAC6, attenuates oxidative stress, reduces the level of apoptotic proteins to maintain chondrocyte survival, and suppresses the extracellular matrix (ECM) degradation. In addition, our results also revealed that HDAC6 inhibition by TubA activates autophagy in chondrocytes, whereas the protective effects of TubA were abolished by autophagy inhibitor intervention. Subsequently, the positive effects of HDAC6 inhibition by TubA were also found in a mouse OA model. Therefore, our study provide evidence that HDAC6 inhibition prevents OA development, and HDAC6 could be applied as a potential therapeutic target for OA management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.