Voids are comment defects generated during the manufacturing process and highly sensitive to moisture in the hygrothermal environment, which has deleterious effects on the mechanical performances. However, the combined impact of void content and water-absorbed content on mechanical properties is not clear. Based on the random sequential adsorption algorithm, a microscale unit cell with random distribution of fibers, interfaces and voids was established. The quantitative effects of voids content on strength and modulus under the loading of transverse tension, compression and shear were investigated by introducing a degradation factor dependent on water content into the constitutive model, and the different failure mechanisms before and after hygrothermal aging were revealed. Conclusively, before hygrothermal aging, voids induce the decrease in mechanical properties due to stress concentration, and every 1% increase in the void content results in a 6.4% decrease in transverse tensile strength. However, matrix degradation due to the absorbed water content after hygrothermal aging is the dominant factor, and the corresponding rate is 3.86%.
Interfacial degradation is the main reason for deterioration of mechanical properties of composites in hydrothermal environments. In this study, the effect of the interphase on water diffusion in two types of unidirectional continuous carbon fiber-reinforced polyamide 6 (CF/PA6) composites is investigated through experimental measurements, theoretical analysis, and numerical simulation. The moisture diffusion coefficient of composite at different environmental temperatures is characterized by water immersion tests for analyzing the barrier and accelerating effects of the interphase layer. Based on the experimental results, the three-phase Halpin–Tsai model is derived and validated, and then the critical diffusivity is obtained to quantify the interfacial effect during the diffusion process. To further validate the present three-phase Halpin–Tsai model, the stable and transient finite element models of moisture diffusion are developed. It is found that the critical diffusivity coefficient of the interphase for the CF/PA6 composite system is 7.31 times higher than that of the matrix.
Ice accretion can cause problems on polar ships, ocean platforms, and in other marine industries. It is important to understand the interface debonding behavior between ice and the surface of equipment. In this work, we created a mechanical model to analyze the interface debonding behavior between a square-based ice cuboid and an elastic coating base, using contact mechanics and fracture mechanics. Three-dimensional (3D) finite element (FE) simulation was used to simulate the interface debonding for normal and shear separation. A bilinear cohesive zone model (CZM) was used to simulate the interface between the ice cuboid and the elastic coating. We investigated the effect of the elastic modulus E of an elastic film on the critical detachment force Fc for normal and shear separation. The results showed that Fc increases with an increase of the elastic modulus of the elastic film. When E exceeds a certain level, Fc achieves a constant value and then remains stable. Finally, a series of epoxy/polydimethylsiloxane (PDMS) interpenetrating polymer-network (IPN) gel coatings with different elastic moduli were prepared. The ice tensile and shear adhesion strengths (σice and τice) of the coatings were measured. The results were roughly consistent with the results of the numerical simulation when E < 1 MPa.
An effective deicing system is needed to be designed to conveniently remove ice from the surfaces of structures. In this paper, an ultrasonic deicing system for different configurations was estimated and verified based on finite element simulations. The research focused on deicing efficiency factor (DEF) discussions, prediction, and validations. Firstly, seven different configurations of Lead zirconate titanate (PZT) disk actuators with the same volume but different radius and thickness were adopted to conduct harmonic analysis. The effects of PZT shape on shear stresses and optimal frequencies were obtained. Simultaneously, the average shear stresses at the ice/substrate interface and total energy density needed for deicing were calculated. Then, a coefficient named deicing efficiency factor (DEF) was proposed to estimate deicing efficiency. Based on these results, the optimized configuration and deicing frequency are given. Furthermore, four different icing cases for the optimize configuration were studied to further verify the rationality of DEF. The effects of shear stress distributions on deicing efficiency were also analyzed. At same time, a cohesive zone model (CZM) was introduced to describe interface behavior of the plate and ice layer. Standard-explicit co-simulation was utilized to model the wave propagation and ice layer delamination process. Finally, the deicing experiments were carried out to validate the feasibility and correctness of the deicing system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.