The present study found that canagliflozin, dapagliflozin and empagliflozin were associated with a significantly higher risk of genital infections compared with placebo and other active treatments. Only dapagliflozin had a dose-response relationship with UTIs and genital infections.
KRAS homo‐dimerization has been implicated in the activation of RAF kinases, however, the mechanism and structural basis remain elusive. We developed a system to study KRAS dimerization on nanodiscs using paramagnetic relaxation enhancement (PRE) NMR spectroscopy, and determined distinct structures of membrane‐anchored KRAS dimers in the active GTP‐ and inactive GDP‐loaded states. Both dimerize through an α4–α5 interface, but the relative orientation of the protomers and their contacts differ substantially. Dimerization of KRAS‐GTP, stabilized by electrostatic interactions between R135 and E168, favors an orientation on the membrane that promotes accessibility of the effector‐binding site. Remarkably, “cross”‐dimerization between GTP‐ and GDP‐bound KRAS molecules is unfavorable. These models provide a platform to elucidate the structural basis of RAF activation by RAS and to develop inhibitors that can disrupt the KRAS dimerization. The methodology is applicable to many other farnesylated small GTPases.
KRAS is frequently mutated in several of the most lethal types of cancer; however, the KRAS protein has proven a challenging drug target. K-RAS4B must be localized to the plasma membrane by prenylation to activate oncogenic signaling, thus we endeavored to target the protein-membrane interface with small-molecule compounds. While all reported lead compounds have low affinity for KRAS in solution, the potency of Cmpd2 was strongly enhanced when prenylated K-RAS4B is associated with a lipid bilayer. We have elucidated a unique mechanism of action of Cmpd2, which simultaneously engages a shallow pocket on KRAS and associates with the lipid bilayer, thereby stabilizing KRAS in an orientation in which the membrane occludes its effector-binding site, reducing RAF binding and impairing activation of RAF. Furthermore, enrichment of Cmpd2 on the bilayer enhances potency by promoting interaction with KRAS. This insight reveals a novel approach to developing inhibitors of membrane-associated proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.