The speed of rotating parts is often affected by different working conditions in mechanical equipment, which results in more complications in the feature mapping relationship. However, existing methods that address the large fluctuation problem in rotational speed have been formulated merely to improve test accuracy and do not consider the effects of irregular fluctuation frequency on the fault samples located at the class boundary. Thus, to distinguish the health conditions under frequent or irregular fluctuation speeds, this paper explores an enhanced sparse filtering (SF) algorithm based on maximum classifier discrepancy to diagnose the fault conditions caused by speed fluctuation. It considers the superiority of the task-specific decision boundary and adversarial training for the fault diagnosis network. Unlike traditional SF methods, the proposed framework introduces the Wasserstein distance to reduce the domain discrepancy between the source domain and the target domain and then uses the probability output discrepancy of the classifier to locate the fuzzy fault samples on the class boundary. This paper conducts theoretical analysis and experimental comparison and verifies the performance advantages of the framework through bearing and gear experiments under large speed fluctuation conditions. The proposed model also shows an excellent performance even when the speed fluctuates frequently.
The application of deep learning to fault diagnosis has made encouraging progress in recent years. However, it is hard to obtain sufficient labeled data to ensure the performance of diagnostic models, due to complex and varying working conditions. Over-fitting often occurs when few labeled data are used in training. To address this crucial problem, a novel transfer-learning method called the selective normalized multiscale convolutional adversarial network (SNMCAN) is proposed in this paper. The proposed model introduces multiscale convolutional neural networks (CNNs) to capture rich fault feature information at multiple scales. A batch normalization (BN) module, widely used in CNNs, is reconstructed into a new normalization method called ‘selective normalization’ to learn diagnostic knowledge from a pre-trained model and avoid over-fitting with limited labeled data. Joint maximum mean discrepancy (JMMD) is applied to minimize the joint distribution discrepancy between different domains and improve the results of domain alignment. An adversarial training strategy is also used in the proposed model to easily distinguish the distributions of the source and target domains. The superiority of the proposed method is demonstrated using two case studies. The case study results demonstrate that the SNMCAN can achieve better performance in fault diagnosis than comparison methods.
The domain adaptation problem in transfer learning has received extensive attention in recent years. The existing transfer model for solving domain alignment always assumes that the label space is completely shared between domains. However, this assumption is untrue in the actual industry and limits the application scope of the transfer model. Therefore, a universal domain method is proposed, which not only effectively reduces the problem of network failure caused by unknown fault types in the target domain but also breaks the premise of sharing the label space. The proposed framework takes into account the discrepancy of the fault features shown by different fault types and forms the feature center for fault diagnosis by extracting the features of samples of each fault type. Three optimization functions are added to solve the negative transfer problem when the model solves samples of unknown fault types. This study verifies the performance advantages of the framework for variable speed through experiments of multiple datasets. It can be seen from the experimental results that the proposed method has better fault diagnosis performance than related transfer methods for solving unknown mechanical faults.
This study proposes an approach to minimize the maximum makespan of the integrated scheduling problem in flexible job-shop environments, taking into account conflict-free routing problems. A hybrid genetic algorithm is developed for production scheduling, and the optimal ranges of crossover and mutation probabilities are also discussed. The study applies the proposed algorithm to 82 test problems and demonstrates its superior performance over the Sliding Time Window (STW) heuristic proposed by Bilge and the Genetic Algorithm proposed by Ulusoy (UGA). For conflict-free routing problems of Automated Guided Vehicles (AGVs), the genetic algorithm based on AGV coding is used to study the AGV scheduling problem, and specific solutions are proposed to solve different conflicts. In addition, sensors on the AGVs provide real-time data to ensure that the AGVs can navigate through the environment safely and efficiently without causing any conflicts or collisions with other AGVs or objects in the environment. The Dijkstra algorithm based on a time window is used to calculate the shortest paths for all AGVs. Empirical evidence on the feasibility of the proposed approach is presented in a study of a real flexible job-shop. This approach can provide a highly efficient and accurate scheduling method for manufacturing enterprises.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.