The molecular mechanism of intervertebral disc degeneration (IVDD) remains unclear. This study aimed to investigate the role of circular RNAs (circRNAs) in the pathogenesis of IVDD. We sued nucleus pulposus (NP) tissues of patients, tert-butyl hydroperoxide (TBHP) stimulated NP cells (NPCs), and IVDD rat model to explore the interaction between circERCC2 and miR-182-5p/SIRT1 axis. The results showed that downregulation of circERCC2 increased the level of miR-182-5p and decreased the level of SIRT1 in degenerative NP tissues in vivo as well as in TBHP-stimulated NPCs in vitro. Treatment of SIRT1-si activated apoptosis and inhibited mitophagy. Moreover, miR-182-5p-si could regulate the mitophagy and the apoptosis of NPCs by targeting SIRT1. The effects of circERCC2 on NPCs and IVDD rat model were mediated by miR-182-5p/SIRT1 axis. In conclusion, this study provides the first evidence that circERCC2 could ameliorate IVDD through miR-182-5p/SIRT1 axis by activating mitophagy and inhibiting apoptosis, and suggests that circERCC2 is a potentially effective therapeutic target for IVDD.
We previously demonstrated that transmissible gastroenteritis virus (TGEV) could induce apoptosis through caspase signaling. However, apoptosis was not completely prevented by caspases
inhibitors, suggesting that there may be a caspase-independent pathway involved in TGEV-induced cell apoptosis. In this study, we investigated the regulation of apoptosis-inducing factor
(AIF) on TGEV-induced apoptotic pathway. Results indicated that AIF translocated from the mitochondria to nucleus during TGEV infection, and the AIF inhibitor, N-phenylmaleimide (NP),
significantly attenuated the apoptosis. In addition, the translocation of AIF was inhibited by Veliparib (ABT-888), an inhibitor of poly (ADP-ribose) polymerase (PARP). And the reactive
oxygen species (ROS) scavenger, pyrrolidinedithiocarbamic (PDTC), redistributed AIF in the mitochondria and nucleus in TGEV-infected cells. Moreover, the protein levels in nucleus and the
mRNA levels of AIF were inhibited in the presence of the p53 inhibitor, pifithrin-α (PFT-α) or in TGEV-infected p53−/−cells. Furthermore, TGEV-induced apoptosis was blocked by combination of
three or more inhibitors, such as pan caspase inhibitor Z-VAD-FMK, NP, ABT-888, PDTC, PFT-α, to treat PK-15 cells. Taken together, these results suggest that the p53- and ROS-mediated AIF
pathway and caspase-dependent pathway were involved in TGEV-induced apoptosis.
The Wnt/β-catenin signaling pathway is associated with the pathogenesis of steroid-induced osteonecrosis. Our investigation studied whether aberrant CpG island hypermethylation of the FZD1 gene was present in patients with osteonecrosis of the femoral head (ONFH), which results in Wnt/β-catenin signaling inactivation and subsequent cell dysfunction. Bone marrow was collected from the proximal femurs of patients with steroid-associated ONFH (
n
= 21) and patients with new femoral neck fractures (
n
= 22), and then mesenchymal stem cells (MSCs) were isolated. We investigated cell viability, the transcription and translation levels of Wnt/β-catenin signaling-related genes, the extent of methylation at CpG islands of the FZD1 promoter, and the osteogenic and adipogenic differentiation abilities of MSCs from the control group and from the ONFH group treated with or without 5′-Aza-dC. According to the results, MSCs from the ONFH group showed a reduced proliferation ability, low transcription and translation levels of FZD1, inhibition of the Wnt/β-catenin signaling pathway, weakened osteogenesis and enhanced adipogenesis ability. Aberrant CpG island hypermethylation of FZD1 was observed in the ONFH group. Treatment with 5’-Aza-dC resulted in de novo FZD1 expression, reactivation of the Wnt/β-catenin signaling pathway and promotion of osteogenesis. Taken together, our study not only provides novel insights into the regulation of the Wnt/β-catenin signaling pathway in this disease but also reveals potential for the use of demethylating agents for the treatment of GC-associated ONFH.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.