A honeycomb-like carbon-based network is obtained by in situ nucleation and directed growth of metal-organic framework (MOF) arrays on the surface of layered double hydroxide (LDH) nanoplatelets, followed by a subsequent pyrolysis process, which exhibits largely enhanced electrocatalytic ORR performances. A successful paradigm for the directed growth of highly oriented MOF arrays is demonstrated, with potential applications for energy storage and conversion.
Two-dimensional (2D) materials have attracted increasing interest in electrochemical energy storage and conversion. As typical 2D materials, layered double hydroxides (LDHs) display large potential in this area due to the facile tunability of their composition, structure and morphology. Various preparation strategies, including in situ growth, electrodeposition and layer-by-layer (LBL) assembly, have been developed to directly modify electrodes by using LDH materials. Moreover, several composite materials based on LDHs and conductive matrices have also been rationally designed and employed in supercapacitors, batteries and electrocatalysis with largely enhanced performances. This feature article summarizes the latest developments in the design, preparation and evaluation of LDH materials toward electrochemical energy storage and conversion.
Electrochemical nitrate reduction to ammonia is a promising alternative strategy to the traditional Haber-Bosch process but suffers from a low Faradaic efficiency and limited ammonia yield due to the sluggish multi-electron/proton-involved steps. Herein, we report a typical hollow cobalt phosphide nanosphere electrocatalyst assembled on a self-supported carbon nanosheet array synthesized with a confinement strategy that exhibits an extremely high ammonia yield rate of 8.47 mmol h−1 cm−2 through nitrate reduction reaction, which is highly superior to previously reported values to our knowledge. In situ experiments and theoretical investigations reveal that the dynamic equilibrium between the generation of active hydrogen on cobalt phosphide and its timely consumption by nitrogen intermediates leads to a superior ammonia yield with a high Faradaic efficiency. This unique insight based on active hydrogen equilibrium provides new opportunities for large-scale ammonia production through electrochemical techniques and can be further used for carbon dioxide capture.
Electrochemical alcohols oxidation offers a promising approach to produce valuable chemicals and facilitate coupled H2 production. However, the corresponding current density is very low at moderate cell potential that substantially limits the overall productivity. Here we report the electrooxidation of benzyl alcohol coupled with H2 production at high current density (540 mA cm−2 at 1.5 V vs. RHE) over a cooperative catalyst of Au nanoparticles supported on cobalt oxyhydroxide nanosheets (Au/CoOOH). The absolute current can further reach 4.8 A at 2.0 V in a more realistic two-electrode membrane-free flow electrolyzer. Experimental combined with theoretical results indicate that the benzyl alcohol can be enriched at Au/CoOOH interface and oxidized by the electrophilic oxygen species (OH*) generated on CoOOH, leading to higher activity than pure Au. Based on the finding that the catalyst can be reversibly oxidized/reduced at anodic potential/open circuit, we design an intermittent potential (IP) strategy for long-term alcohol electrooxidation that achieves high current density (>250 mA cm−2) over 24 h with promoted productivity and decreased energy consumption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.