In this paper, we propose a new regularization technique called "functional SCAD". We then combine this technique with the smoothing spline method to develop a smooth and locally sparse (i.e., zero on some sub-regions) estimator for the coefficient function in functional linear regression. The functional SCAD has a nice shrinkage property that enables our estimating procedure to identify the null subregions of the coefficient function without over shrinking the non-zero values of the coefficient function. Additionally, the smoothness of our estimated coefficient function is regularized by a roughness penalty rather than by controlling the number of knots. Our method is more theoretically sound and is computationally simpler than the other available methods. An asymptotic analysis shows that our estimator is consistent and can identify the null region with the probability tending to one. Furthermore, simulation studies show that our estimator has superior numerical performance. Finally, the practical merit of our method is demonstrated on two real applications. keywords: B-spline basis, null region, smoothly clipped absolute deviation.
In this work we develop a novel and foundational framework for analyzing general Riemannian functional data, in particular a new development of tensor Hilbert spaces along curves on a manifold. Such spaces enable us to derive Karhunen-Loève expansion for Riemannian random processes. This framework also features an approach to compare objects from different tensor Hilbert spaces, which paves the way for asymptotic analysis in Riemannian functional data analysis. Built upon intrinsic geometric concepts such as vector field, Levi-Civita connection and parallel transport on Riemannian manifolds, the developed framework applies to not only Euclidean submanifolds but also manifolds without a natural ambient space. As applications of this framework, we develop intrinsic Riemannian functional principal component analysis (iRFPCA) and intrinsic Riemannian functional linear regression (iRFLR) that are distinct from their traditional and ambient counterparts. We also provide estimation procedures for iRF-PCA and iRFLR, and investigate their asymptotic properties within the intrinsic geometry. Numerical performance is illustrated by simulated and real examples.
Modern data collection often entails longitudinal repeated measurements that assume values on a Riemannian manifold. Analyzing such longitudinal Riemannian data is challenging, because of both the sparsity of the observations and the nonlinear manifold constraint. Addressing this challenge, we propose an intrinsic functional principal component analysis for longitudinal Riemannian data. Information is pooled across subjects by estimating the mean curve with local Fréchet regression and smoothing the covariance structure of the linearized data on tangent spaces around the mean. Dimension reduction and imputation of the manifold-valued trajectories are achieved by utilizing the leading principal components and applying best linear unbiased prediction. We show that the proposed mean and covariance function estimates achieve state-of-the-art convergence rates. For illustration, we study the development of brain connectivity in a longitudinal cohort of Alzheimer's disease and normal participants by modeling This is the author manuscript accepted for publication and has undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.