The behavior of the perturbation map is analyzed quantitatively by using the concept of higher-order contingent derivative for the set-valued maps under Henig efficiency. By using the higher-order contingent derivatives and applying a separation theorem for convex sets, some results concerning higher-order sensitivity analysis are established.
In view of the structural advantage of second-order composed derivatives, the purpose of this paper is to analyze quantitatively the behavior of perturbation maps for the first time by using this concept. First, new concepts of the second-order composed adjacent derivative and the second-order composed lower Dini derivative are introduced. Some relationships among the second-order composed contingent derivative, the second-order composed adjacent derivative and the second-order composed lower Dini derivative are discussed. Second, the relationships between second-order composed lower Dini derivable and Aubin property are provided. Third, by virtue of second-order composed contingent derivatives and the above relationships, some results concerning second-order sensitivity analysis are established without the assumption of the locally Lipschitz property or the locally Hölder continuity. Finally, we give some complete characterizations of second-order composed contingent derivatives of the perturbation maps.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.