Clinical and forensic toxicology laboratories are continuously confronted by analytical challenges when dealing with the new psychoactive substances (NPS) phenomenon. In this study, the analytical characterization of nine synthetic cathinones is described: 2-(ethylamino)-1-phenylhexan-1-one (N-ethylhexedrone 1), 1-(4-chlorophenyl)-2-(methylamino)pentan-1-one (4-Cl-pentedrone 2), 1-(4-chlorophenyl)-2-(ethylamino)pentan-1-one (4-Cl-α-EAPP 3), 1-(3,4-methylenedioxyphenyl)-2-propylaminopropan-1-one (propylone 4), 1-(3,4-methylenedioxyphenyl)-2-ethylaminopentan-1-one (N-ethylnorpentylone 5), 1-(6-methoxy-3,4-methylenedioxyphenyl)-2-methylaminopropan-1-one (6-MeO-bk-MDMA 6), 4-methyl-1-phenyl-2-(pyrrolidin-1-yl)pentan-1-one (α-PiHP 7), 1-(4-chlorophenyl)-2-(pyrrolidin-1-yl)hexan-1-one (4-Cl-α-PHP 8), and 1-(4-fluorophenyl)-2-(pyrrolidin-1-yl)hexan-1-one (4-F-α-PHP 9). The identification was based on ultra-high-performance liquid chromatography-quadrupole time-of-flight-mass spectrometry (UHPLC-QTOF-MS), gas chromatography-mass spectrometry (GC-MS), and nuclear magnetic resonance (NMR) spectroscopy. The mass-spectral fragmentations of these compounds following collision-induced dissociation (CID) and electron ionization (EI) were studied to assist forensic laboratories in identifying these compounds or other substances with similar structure in their case work. To our knowledge, no analytical data about the compounds 1-4, 7, and 8 have appeared until now, making this the first report on these compounds. The GC-MS data of 5, 6 and 9 has been reported, but this study added the LC-MS, Fourier Transform Infrared (FTIR) and NMR data for additional characterization. Copyright © 2016 John Wiley & Sons, Ltd.
Since the first appearance as psychotropic drugs in illegal markets in 2008, the spread of synthetic cannabinoids is becoming a serious problem in many countries. This paper reports on the analytical properties and structure elucidation of four cannabimimetic derivatives in seized material: 1-benzyl-N-(1-carbamoyl-2,2-dimethylpropan-1-yl)-1H-indole-3-carboxamide (ADB-BICA, 1), N-(1-carbamoylpropan-1-yl)-1-(5-fluoropentyl)-1H-pyrrolo[2,3-b]pyridine-3-carboxamide (NNL-1, 2), (4-benzylpiperazin-1-yl)(1-(5-fluoropentyl)-1H-indol-3-yl)methanone (NNL-2, 3), and N-(1-carbamoyl-2-phenylethyl)-1-(5-fluoropentyl)-1H-indazole-3-carboxamide (PPA(N)-2201, 4). The identifications were based on liquid chromatography-quadrupole-time-of-flight-mass spectrometry (LC-QTOF-MS), gas chromatography-mass spectrometry (GC-MS), Fourier transform infrared spectroscopy (FT-IR), and nuclear magnetic resonance (NMR) spectroscopy. No chemical or pharmacological data about compounds 1-3 have appeared until now, making this the first report on these compounds. The GC-MS data of 4 has been reported, but this study added the LC-MS, FT-IR, and NMR data for additional characterization. Copyright © 2016 John Wiley & Sons, Ltd.
Clinical and forensic toxicology laboratories are continuously confronted by analytical challenges when dealing with the new psychoactive substances phenomenon. The number of synthetic cannabinoids, the chemical diversity, and the speed of emergence make this group of compounds particularly challenging in terms of detection, monitoring, and responding. Three indazole 7N positional isomer synthetic cannabinoids, two ethyl 2-amino-3-methylbutanoate-type synthetic cannabinoids, and one 9H-carbazole substituted synthetic cannabinoid were identified in seized materials. These six synthetic cannabinoid derivatives included: 1H-benzo[d] [1,2,3]triazol-1-yl 1-(5-fluoropentyl)-1H-pyrrolo[2,3-b]pyridine-3-carboxylate (NNL-3, 1), quinolin-8-yl 1-(5-fluoropentyl)-1H-pyrrolo[2,3-b]pyridine-3-carboxylate (5F-NPB-22-7N, 2), N-((1 s,3 s)-adamantan-1-yl)-1-(5-fluoropentyl)-1H-pyrrolo[2,3-b]pyridine-3-carboxamide (5F-AKB-48-7N, 3), ethyl 2-(1-(5-fluoropentyl)-1H-indazole-3-carboxamido)-3,3-dimethylbutanoate (5F-EDMB-PINACA, 4), ethyl 2-(1-(4-fluorobenzyl)-1H-indazole-3-carboxamido)-3-methylbutanoate (EMB-FUBINACA, 5), and naphthalen-1-yl(9-pentyl-9H-carbazol-3-yl)methanone (EG-018, 6). The identification was based on ultra-high-performance liquid chromatography-quadrupole time-of-flight-mass spectrometry (UHPLC-QTOF-MS), gas chromatography-mass spectrometry (GC-MS), and nuclear magnetic resonance spectroscopy (NMR). The analytical characterization of these six synthetic cannabinoids was described, so as to assist forensic laboratories in identifying these compounds or other substances with similar structure in their case work. To our knowledge, no analytical data about the compounds 1-5 have appeared until now, making this the first report on these compounds. The GC-MS data of 6 has been reported, but this study added the LC-MS, NMR, and Fourier transform infrared (FTIR), data to render the analytical data collection process more complete. Copyright © 2017 John Wiley & Sons, Ltd.
New psychoactive substances (NPS) have gained much popularity on the global market over the last number of years. The synthetic cathinone family is one of the most prominent groups and this paper reports on the analytical properties of four synthetic cathinone derivatives: (1) 1-(4-bromophenyl)-1-(methylamino)propan-2-one (iso-4-BMC or iso-brephedrone), (2) 2-(pyrrolidin-1-yl)-1-(5,6,7,8-tetrahydronaphthalen-2-yl)pentan-1-one (β-TH-naphyrone), (3) 3-methoxy-2-(methylamino)-1-(4-methylphenyl)propan-1-one (mexedrone), and (4) 2-(dimethylamino)-1-(4-methylphenyl)propan-1-one (4-MDMC). These identifications were based on liquid chromatography-quadrupole time-of-flight-mass spectrometry (LC-QTOF-MS), gas chromatography-mass spectrometry (GC-MS) and nuclear magnetic resonance (NMR) spectroscopy. To our knowledge, no chemical or pharmacological data about compounds 1-3 have appeared until now, making this the first report on these compounds. The Raman and GC-MS data of 4 have been reported, but this study added the LC-MS and NMR data for additional characterization. Copyright © 2016 John Wiley & Sons, Ltd.
We identified four cannabimimetic indazole and indole derivatives in new illegal psychoactive substances seized from a clandestine laboratory in China. These four derivatives included N-(1-amino-3,3-dimethyl-1-oxobutan-2-yl)-1-benzyl-1H-indazole-3-carboxamide (ADB-BINACA, 1), N-(1-amino-3-methyl-1-oxobutan-2-yl)-1-(4-fluorobenzyl)-1H-indole-3-carboxamide (AB-FUBICA, 2), N-(1-amino-3,3-dimethyl-1-oxobutan-2-yl)-1-(4-fluorobenzyl)-1H-indole-3-carboxamide (ADB-FUBICA, 3), and N-(1-amino-3-methyl-1-oxobutan-2-yl)-1-benzyl-1H-indole-3-carboxamide (AB-BICA, 4). These compounds were identified by liquid chromatography–high-resolution mass spectrometry, gas chromatography–mass spectrometry, and nuclear magnetic resonance spectroscopy. No chemical or pharmacological data about compound 4 has appeared until now, making this the first report on this compound. Compounds 1, 2, and 3 have previously been reported to have a high affinity for cannabinoid CB1 and CB2 receptors, but this is the first report of their presence in illegal products.Electronic supplementary materialThe online version of this article (doi:10.1007/s11419-015-0297-2) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.