Abstract:The directional distance function model is a generalization of the radial model in data envelopment analysis (DEA). The directional distance function model is appropriate for dealing with cases where undesirable outputs exist. However, it is not a units-invariant measure of efficiency, which limits its accuracy. In this paper, we develop a data normalization method for DEA, which is a universal solution for the problem of units-invariance in DEA. The efficiency scores remain unchanged when the original data are replaced with the normalized data in the existing units-invariant DEA models, including the radial and slack-based measure models, i.e., the data normalization method is compatible with the radial and slack-based measure models. Based on normalized data, a units-invariant efficiency measure for the directional distance function model is defined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.