Acoustic metamaterials with both ventilation and broadband asymmetric absorption have demonstrated great scientific significance and promising applicability. In this work, we design an asymmetric absorbing cell (AAC) consisting of a pair of detuned Helmholtz resonators (HRs) connected by sound channels that allows airflow with a ventilation ratio (ventilation area divided by sound incidence area) of 40%, which can achieve near-perfect sound absorption in the operating frequency range when sound waves are incident from the left port. However, when incident on the right port, the acoustic absorption coefficient does not exceed 40% at most, so asymmetric absorption is achieved. In addition, we form parallel three-cell asymmetric absorber (PTAA) by paralleling three AACs, which have broadband asymmetric absorption compared to AAC. Furthermore, we design multi-asymmetric absorber (MAA), which can achieve broadband asymmetric absorption range from 1000 Hz to 1750 Hz, and also allow air circulation. Moreover, experimental validation is conducted to demonstrate the effectiveness of fabricated MAA by 3D printing technology. Our designs open potential possibilities for developing ventilated functional devices capable of absorbing sound asymmetrically.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.