Cronobacter sakazakii is an important pathogen associated with the development of necrotizing enterocolitis (NEC), infant sepsis, and meningitis. Several randomized prospective clinical trials demonstrated that oral probiotics could decrease the incidence of NEC. Previously, we isolated and characterized a novel probiotic, Bacteroides fragilis strain ZY-312. However, it remains unclear how ZY-312 protects the host from the effects of C. sakazakii infection. To understand the underlying mechanisms triggering the probiotic effects, we tested the hypothesis that there was cross talk between probiotics/probiotics-modulated microbiota and the local immune system, governed by the permeability of the intestinal mucosa, using in vitro and in vivo models for the intestinal permeability. The probiotic effects of ZY-312 on intestinal epithelial cells were first examined, and the results revealed that ZY-312 inhibited C. sakazakii invasion, C. sakazakii-induced dual cell death (pyroptosis and apoptosis), and epithelial barrier dysfunction in vitro and in vivo. The presence of ZY-312 also resulted in decreased expression of an inflammasome (NOD-like receptor family member pyrin domain-containing protein 3 [NLRP3]), caspase-3, and serine protease caspase-1 in a neonatal rat model. Furthermore, ZY-312 significantly modulated the compositions of the intestinal bacterial communities and decreased the relative abundances of Proteobacteria and Gammaproteobacteria but increased the relative abundances of Bacteroides and Bacillus in neonatal rats. In conclusion, our findings have shown for the first time that the probiotic B. fragilis ZY-312 suppresses C. sakazakii-induced NEC by modulating the proinflammatory response and dual cell death (apoptosis and pyroptosis). IMPORTANCE Cronobacter sakazakii is an opportunistic pathogenic bacterium that can cause necrotizing enterocolitis (NEC). However, the mechanism of pathogenicity of C. sakazakii is largely unknown. Here we have now demonstrated that apoptotic and pyroptotic stimuli are effectors of C. sakazakii-induced NEC. Previously, we isolated a novel probiotic strain candidate from fecal samples from healthy infants and characterized it as Bacteroides fragilis strain ZY-312. Functional characterization reveals that ZY-312 inhibited C. sakazakii invasion, restoring epithelial barrier dysfunction, decreasing the expression of inflammatory cytokines, and reducing dual cell death (pyroptosis and apoptosis). Furthermore, the presence of ZY-132 was sufficient to hinder the adverse reaction seen with C. sakazakii in a C. sakazakii-induced NEC model. Taking the results together, our study demonstrated the utility of ZY-312 as a promising probiotic agent for the prevention of NEC.
Background Colorectal cancer (CRC) is prevalent worldwide and is often challenged by treatment failure and recurrence due to resistance to radiotherapy. Here, we aimed to identify the elusive underlying molecular mechanisms of radioresistance in CRC. Methods Weighted gene co-expression network analysis was used to identify potential radiation-related genes. Colony formation and comet assays and multi-target single-hit survival and xenograft animal models were used to validate the results obtained from the bioinformatic analysis. Immunohistochemistry was performed to examine the clinical characteristics of ALDH1L2. Co-immunoprecipitation, immunofluorescence and flow cytometry were used to understand the molecular mechanisms underlying radioresistance. Results Bioinformatic analysis, in vitro, and in vivo experiments revealed that ALDH1L2 is a radiation-related gene, and a decrease in its expression induces radioresistance in CRC cells by inhibiting ROS-mediated apoptosis. Patients with low ALDH1L2 expression exhibit resistance to radiotherapy. Mechanistically, ALDH1L2 interacts with thioredoxin (TXN) and regulates the downstream NF-κB signaling pathway. PX-12, the TXN inhibitor, overcomes radioresistance due to decreased ALDH1L2. Conclusions Our results provide valuable insights into the potential role of ALDH1L2 in CRC radiotherapy. We propose that the simultaneous application of TXN inhibitors and radiotherapy would significantly ameliorate the clinical outcomes of patients with CRC having low ALDH1L2.
Over the past two decades, liquid biopsy has been increasingly used as a supplement, or even, a replacement to the traditional biopsy in clinical oncological practice, due to its noninvasive and early detectable properties. The detections can be based on a variety of features extracted from tumor‑derived entities, such as quantitative alterations, genetic changes, and epigenetic aberrations, and so on. So far, the clinical applications of cancer liquid biopsy mainly aimed at two aspects, prediction (early diagnosis, prognosis and recurrent evaluation, therapeutic response monitoring, etc.) and intervention. In spite of the rapid development and great contributions achieved, cancer liquid biopsy is still a field under investigation and deserves more clinical practice. To better open up future work, here we systematically reviewed and compared the latest progress of the most widely recognized circulating components, including circulating tumor cells, cell‐free circulating DNA, noncoding RNA, and nucleosomes, from their discovery histories to clinical values. According to the features applied, we particularly divided the contents into two parts, beyond epigenetics and epigenetic‐based. The latter was considered as the highlight along with a brief overview of the advances in both experimental and bioinformatic approaches, due to its unique advantages and relatively lack of documentation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.