The use of solar energy to produce molecular hydrogen and oxygen (H2 and O2) from overall water splitting is a promising means of renewable energy storage. In the past 40 years, various inorganic and organic systems have been developed as photocatalysts for water splitting driven by visible light. These photocatalysts, however, still suffer from low quantum efficiency and/or poor stability. We report the design and fabrication of a metal-free carbon nanodot-carbon nitride (C3N4) nanocomposite and demonstrate its impressive performance for photocatalytic solar water splitting. We measured quantum efficiencies of 16% for wavelength λ = 420 ± 20 nanometers, 6.29% for λ = 580 ± 15 nanometers, and 4.42% for λ = 600 ± 10 nanometers, and determined an overall solar energy conversion efficiency of 2.0%. The catalyst comprises low-cost, Earth-abundant, environmentally friendly materials and shows excellent stability.
Carbon nanostructures are attracting intense interest because of their many unique and novel properties. The strong and tunable luminescence of carbon materials further enhances their versatile properties; in particular, the quantum effect in carbon is extremely important both fundamentally and technologically. [1][2][3][4] Recently, photoluminescent carbonbased nanoparticles have received much attention. They are usually prepared by laser ablation of graphite, electrochemical oxidation of graphite, electrochemical soaking of carbon nanotubes, thermal oxidation of suitable molecular precursors, vapor deposition of soot, proton-beam irradiation of nanodiamonds, microwave synthesis, and bottom-up methods.[5-13] Although small (ca. 2 nm) graphite nanoparticles show strong blue photoluminescence (PL), [13] definitive experimental evidence for luminescence of carbon structure arising from quantum-confinement effects and size-dependent optical properties of carbon quantum dots (CQDs) remains scarce.Herein, we report the facile one-step alkali-assisted electrochemical fabrication of CQDs with sizes of 1.2-3.8 nm which possess size-dependent photoluminescence (PL) and excellent upconversion luminescence properties. Significantly, we demonstrate the design of photocatalysts (TiO 2 /CQDs and SiO 2 /CQDs complex system) to harness the use of the full spectrum of sunlight (based on the upconversion luminescence properties of CQDs).
High quality carbon nanodots (C-dots) with high purity were synthesized through a mild, one-step electrochemical approach, without the assistance of any chemicals but only pure water. This high productivity method makes the synthetic process of C-dots synthesis both economical as well as environment-friendly. The as prepared C-dots are predominantly multi-layer graphene oxide, with luminescence and high up-conversion photoluminescence (emission of light at shorter wavelengths than the excitation wavelength). Meanwhile, C-dots showed peroxidise mimetic function and visible-light-sensitive photocatalytic activity for methyl orange degradation. In addition, a novel photocatalyst (TiO(2)/C-dots) was obtained by combining C-dots with TiO(2) through an easy hydrothermal method. Remarkably, TiO(2)/C-dots exhibited an excellent visible-light photocatalytic activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.