Location publication in check-in services of geo-social networks raises serious privacy concerns due to rich sources of background information. This article proposes a novel destination prediction approach Destination Prediction specially for the check-in service of geo-social networks, which not only addresses the ''data sparsity problem'' faced by common destination prediction approaches, but also takes advantages of the commonly available background information from geo-social networks and other public resources, such as social structure, road network, and speed limits. Further considering the Destination Prediction-based attack model, we present a location privacy protection method Check-in Deletion and framework Destination Prediction + Check-in Deletion to help check-in users detect potential location privacy leakage and retain confidential locational information against destination inference attacks without sacrificing the real-time check-in precision and user experience. A new data preprocessing method is designed to construct a reasonable complete check-in subset from the worldwide check-in data set of a real-world geo-social network without loss of generality and validity of the evaluation. Experimental results show the great prediction ability of Destination Prediction approach, the effective protection capability of Check-in Deletion method against destination inference attacks, and high running efficiency of the Destination Prediction + Check-in Deletion framework.
In the field of cloud computing, most research on identity management has concentrated on protecting user data. However, users typically leave a trail when they access cloud services, and the resulting user traceability can potentially lead to the leakage of sensitive user information. Meanwhile, malicious users can do harm to cloud providers through the use of pseudonyms. To solve these problems, we introduce a reputation mechanism and design a reputation-based identity management model for cloud computing. In the model, pseudonyms are generated based on a reputation signature so as to guarantee the untraceability of pseudonyms, and a mechanism that calculates user reputation is proposed, which helps cloud service providers to identify malicious users. Analysis verifies that the model can ensure that users access cloud services anonymously and that cloud providers assess the credibility of users effectively without violating user privacy.
Nowadays more and more cloud infrastructure service providers are providing large numbers of service instances which are a combination of diversified resources, such as computing, storage, and network. However, for cloud infrastructure services, the lack of a description standard and the inadequate research of systematic discovery and selection methods have exposed difficulties in discovering and choosing services for users. First, considering the highly configurable properties of a cloud infrastructure service, the feature model method is used to describe such a service. Second, based on the description of the cloud infrastructure service, a systematic discovery and selection method for cloud infrastructure services are proposed. The automatic analysis techniques of the feature model are introduced to verify the model’s validity and to perform the matching of the service and demand models. Finally, we determine the critical decision metrics and their corresponding measurement methods for cloud infrastructure services, where the subjective and objective weighting results are combined to determine the weights of the decision metrics. The best matching instances from various providers are then ranked by their comprehensive evaluations. Experimental results show that the proposed methods can effectively improve the accuracy and efficiency of cloud infrastructure service discovery and selection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.