This study aimed to investigate the effects of different water velocities on the growth performance, blood physiology, and digestive capacity of coral trout (Plectropomus leopardus) in a Recirculating aquaculture system (RAS). One hundred and twenty healthy, uniformly sized coral trout (body mass (92.01 ± 8.04) g; body length (15.40 ± 0.65) cm) were randomly assigned to three flow velocity groups (1 bl/s, 2 bl/s, and 2.5 bl/s) and one control group (0 bl/s). The results show that the weight gain rate (WGR) and specific growth rate (SGR) of coral trout in the 2.5 bl/s water flow velocity group were significantly lower than those in the control group and 1 bl/s water flow velocity group (p < 0.05), while their feed coefficient (FC) values were significantly higher than those of the control group and 1 bl/s water flow velocity group (p < 0.05). The blood glucose (GLU) concentration of coral trout in the 2 bl/s water flow velocity group and the 2.5 bl/s water flow velocity group significantly decreased compared to those in the control group (p < 0.05), while the lactic acid (LD) concentration increased. As the cortisol (COR) concentration and lipase (LPS) enzyme activity of coral trout did not significantly change (p > 0.05), the α- AMS enzyme activity significantly decreased (p < 0.05). Under 2.5 bl/s water flow velocity, the intestinal structure of coral trout changed, and the number of goblet cells decreased. High-water flow velocities affect the physiological homeostasis and intestinal digestion of coral trout, resulting in a decrease in their growth performance, indicating that coral trout is more sensitive to high-water flow velocities. In actual RAS aquaculture, the flow rate should be controlled within 1 bl/s.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.