Background Thrombotic microangiopathy-induced thrombocytopenia-associated multiple organ failure and hyperinflammatory macrophage activation syndrome are important causes of late pediatric sepsis mortality that are often missed or have delayed diagnosis. The National Institutes of General Medical Science sepsis research working group recommendations call for application of new research approaches in extant clinical data sets to improve efficiency of early trials of new sepsis therapies. Our objective is to apply machine learning approaches to derive computable 24-h sepsis phenotypes to facilitate personalized enrollment in early anti-inflammatory trials targeting these conditions. Methods We applied consensus, k-means clustering analysis to our extant PHENOtyping sepsis-induced Multiple organ failure Study (PHENOMS) dataset of 404 children. 24-hour computable phenotypes are derived using 25 available bedside variables including C-reactive protein and ferritin. Results Four computable phenotypes (PedSep-A, B, C, and D) are derived. Compared to all other phenotypes, PedSep-A patients (n = 135; 2% mortality) were younger and previously healthy, with the lowest C-reactive protein and ferritin levels, the highest lymphocyte and platelet counts, highest heart rate, and lowest creatinine (p < 0.05); PedSep-B patients (n = 102; 12% mortality) were most likely to be intubated and had the lowest Glasgow Coma Scale Score (p < 0.05); PedSep-C patients (n = 110; mortality 10%) had the highest temperature and Glasgow Coma Scale Score, least pulmonary failure, and lowest lymphocyte counts (p < 0.05); and PedSep-D patients (n = 56, 34% mortality) had the highest creatinine and number of organ failures, including renal, hepatic, and hematologic organ failure, with the lowest platelet counts (p < 0.05). PedSep-D had the highest likelihood of developing thrombocytopenia-associated multiple organ failure (Adj OR 47.51 95% CI [18.83–136.83], p < 0.0001) and macrophage activation syndrome (Adj OR 38.63 95% CI [13.26–137.75], p < 0.0001). Conclusions Four computable phenotypes are derived, with PedSep-D being optimal for enrollment in early personalized anti-inflammatory trials targeting thrombocytopenia-associated multiple organ failure and macrophage activation syndrome in pediatric sepsis. A computer tool for identification of individual patient membership (www.pedsepsis.pitt.edu) is provided. Reproducibility will be assessed at completion of two ongoing pediatric sepsis studies.
Cultured cell models are an essential complement to dissecting kidney proximal tubule (PT) function in health and disease but do not fully recapitulate key features of this nephron segment. We recently determined that culture of opossum kidney (OK) cells under continuous orbital shear stress (OSS) significantly augments their morphological and functional resemblance to PTs in vivo. Here we used RNASeq to identify temporal transcriptional changes upon cell culture under static or shear stress conditions. Comparison of gene expression in cells cultured under static or OSS conditions with a database of rat nephron segment gene expression confirms that OK cells cultured under OSS are more similar to the PT in vivo compared with cells maintained under static conditions. Both improved oxygenation and mechanosensitive stimuli contribute to the enhanced differentiation in these cells, and we identified temporal changes in gene expression of known mechanosensitive targets. We observed changes in mRNA and protein levels of membrane trafficking components that may contribute to the enhanced endocytic capacity of cells cultured under OSS. Our data reveal pathways that may be critical for PT differentiation in vivo and validate the utility of this improved cell culture model as a tool to study PT function.
Alternative polyadenylation (APA) in breast tumor samples results in the removal/addition of cis-regulatory elements such as microRNA (miRNA) target sites in the 3′-untranslated region (3′-UTRs) of genes. Although previous computational APA studies focused on a subset of genes strongly affected by APA (APA genes), we identify miRNAs of which widespread APA events collectively increase or decrease the number of target sites [probabilistic inference of microRNA target site modification through APA (PRIMATA-APA)]. Using PRIMATA-APA on the cancer genome atlas (TCGA) breast cancer data, we found that the global APA events change the number of the target sites of particular microRNAs [target sites modified miRNA (tamoMiRNA)] enriched for cancer development and treatments. We also found that when knockdown (KD) of NUDT21 in HeLa cells induces a different set of widespread 3′-UTR shortening than TCGA breast cancer data, it changes the target sites of the common tamoMiRNAs. Since the NUDT21 KD experiment previously demonstrated the tumorigenic role of APA events in a miRNA dependent fashion, this result suggests that the APA-initiated tumorigenesis is attributable to the miRNA target site changes, not the APA events themselves. Further, we found that the miRNA target site changes identify tumor cell proliferation and immune cell infiltration to the tumor microenvironment better than the miRNA expression levels or the APA events themselves. Altogether, our computational analyses provide a proof-of-concept demonstration that the miRNA target site information indicates the effect of global APA events with a potential as predictive biomarker.
Shortening of 3 ′ UTRs (3 ′ US) through alternative polyadenylation is a post-transcriptional mechanism that regulates the expression of hundreds of genes in human cancers. In breast cancer, different subtypes of tumor samples, such as estrogen receptor positive and negative (ER+ and ER-), are characterized by distinct molecular mechanisms, suggesting possible differences in the post-transcriptional regulation between the subtype tumors. In this study, based on the profound tumorigenic role of 3 ′ US interacting with competing-endogenous RNA (ceRNA) network (3 ′ US-ceRNA effect), we hypothesize that the 3 ′ US-ceRNA effect drives subtype-specific tumor growth. However, we found that the subtypes are available in different sample sizes, biasing the ceRNA network size and disabling the fair comparison of the 3 ′ US-ceRNA effect. Using normalized Laplacian matrix eigenvalue distribution, we addressed this bias and built tumor ceRNA networks comparable between the subtypes. Based on the comparison, we identified a novel role of housekeeping (HK) genes as stable and strong miRNA sponges (sponge HK genes) that synchronize the ceRNA networks of normal samples (adjacent to ER+ and ER-tumor samples). We further found that distinct 3 ′ US events in the ER-tumor break the stable sponge effect of HK genes in a subtype-specific fashion, especially in association with the aggressive and metastatic phenotypes. Knockdown of NUDT21 further suggested the role of 3 ′ US-ceRNA effect in repressing HK genes for tumor growth. In this study, we identified 3 ′ US-ceRNA effect on the sponge HK genes for subtype-specific growth of ER-tumors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.