Single-crystal cathode materials for lithium-ion batteries have attracted increasing interest in providing greater capacity retention than their polycrystalline counterparts. However, after being cycled at high voltages, these single-crystal materials exhibit severe structural instability and capacity fade. Understanding how the surface structural changes determine the performance degradation over cycling is crucial, but remains elusive. Here, we investigate the correlation of the surface structure, internal strain, and capacity deterioration by using operando X-ray spectroscopy imaging and nano-tomography. We directly observe a close correlation between surface chemistry and phase distribution from homogeneity to heterogeneity, which induces heterogeneous internal strain within the particle and the resulting structural/performance degradation during cycling. We also discover that surface chemistry can significantly enhance the cyclic performance. Our modified process effectively regulates the performance fade issue of single-crystal cathode and provides new insights for improved design of high-capacity battery materials.
Interfacial issues commonly exist in solid-state batteries, and the microstructural complexity combines with the chemical heterogeneity to govern the local interfacial chemistry. The conventional wisdom suggests that “point-to-point” ion diffusion at the interface determines the ion transport kinetics. Here, we show that solid-solid ion transport kinetics are not only impacted by the physical interfacial contact but are also closely associated with the interior local environments within polycrystalline particles. In spite of the initial discrete interfacial contact, solid-state batteries may still display homogeneous lithium-ion transportation owing to the chemical potential force to achieve an ionic-electronic equilibrium. Nevertheless, once the interior local environment within secondary particle is disrupted upon cycling, it triggers charge distribution from homogeneity to heterogeneity and leads to fast capacity fading. Our work highlights the importance of interior local environment within polycrystalline particles for electrochemical reactions in solid-state batteries and provides crucial insights into underlying mechanism in interfacial transport.
Iodine-doped sulfurized polyacrylonitrile with high conductivity displays an unprecedented capacity for RT-Na/S and RT-K/S batteries operated in ester-based electrolytes.
Solid‐state electrolytes (SSEs) are attracting growing interest for next‐generation Li‐metal batteries with theoretically high energy density, but they currently suffer from safety concerns caused by dendrite growth, hindering their commercial applications. Interfaces between SSEs and solid lithium are argued to be crucial, affecting dendrite growth and determining solid‐state batteries (SSBs) performance. The buried and localized nature of the interface poses a huge challenge for direct characterization under working conditions. Recent review articles have been devoted to evaluating the conductivity and chemical stability of SSEs. Recognizing this, in this Review, the focus is on understanding lithium dendrite beyond conventional factors and offering a perspective on various surface/interface and microstructural phenomena that require close attention by both experimentalists and theoreticians. The complicated ion‐transport mechanism and chemomechanical information correlated with interface and lithium dendrite are discussed. Rational solutions are provided to engineer functional interfaces to suppress lithium dendrites and accelerate progress towards the commercialization of SSBs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.