In order to solve users' rating sparsely problem existing in present recommender systems, this article proposes a personalized recommendation algorithm based on contextual awareness and tensor decomposition. Via this algorithm, it was first constructed two third-order tensors to represent six types of entities, including the user-user-item contexts and the item-item-user contexts. And then, this article uses a high order singular value decomposition method to mine the potential semantic association of the two third-order tensors above. Finally, the resulting tensors were combined to reach the recommendation list to respond the users' personalized query requests. Experimental results show that the proposed algorithm can effectively improve the effectiveness of the recommendation system. Especially in the case of sparse data, it can significantly improve the quality of the recommendation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.