Expression of DAZ-like (DAZL) is a hallmark of vertebrate germ cells, and is essential for embryonic germ cell development and differentiation, yet the gametogenic function of DAZL has not been fully characterized and most of its in vivo direct targets remain unknown. We showed that postnatal stage-specific deletion of Dazl in mouse germ cells did not affect female fertility, but caused complete male sterility with gradual loss of spermatogonial stem cells, meiotic arrest and spermatid arrest. Using the genome-wide high-throughput sequencing of RNAs isolated by cross-linking immunoprecipitation and mass spectrometry approach, we found that DAZL bound to a large number of testicular mRNA transcripts (at least 3008) at the 3′-untranslated region and interacted with translation proteins including poly(A) binding protein. In the absence of DAZL, polysome-associated target transcripts, but not their total transcripts, were significantly decreased, resulting in a drastic reduction of an array of spermatogenic proteins and thus developmental arrest. Thus, DAZL is a master translational regulator essential for spermatogenesis.
Platinum(II) complexes with various π–conjugated ligands have received great attention thanks to their gorgeous spectroscopic properties and applications in optical devices, chemical sensors, and bio-imaging. Their unique square-planar structures and...
Expression of DAZ-like (DAZL) is a hallmark of vertebrate germ cells and essential for embryonic germ cell development and differentiation, yetgametogenic function of DAZL has not been fully characterized with most of its in vivo direct targets unknown. We showed that postnatal stage-specific deletion of Dazl in mouse germ cells did not affect female fertility, but caused complete male sterility with gradual loss of spermatogonial stem cells (SSCs), meiotic arrest and spermatid arrest respectively. Using the genome-wide HITS-CLIP and mass spectrometry approach, we found that DAZL bound to a large number of testicular mRNA transcripts (at least 3008) at 3' UnTranslated Region (3' UTR) and interacted with translation proteins including PABP. In the absence of DAZL, polysome-associated target transcripts, but not their total transcripts were significantly decreased, resulting in drastic reduction of an array of spermatogenic proteins and thus developmental arrest. Thus, DAZL is
Cardiolipin (CL) is the signature phospholipid of mitochondrial membranes, where it is synthesized locally and plays an important role in mitochondrial bioenergetics. Previous studies in the yeast model have indicated that CL is required for optimal iron homeostasis, which is disrupted by a mechanism not yet determined in the yeast CL mutant, crd1Δ. This finding has implications for the severe genetic disorder, Barth syndrome (BTHS), in which CL metabolism is perturbed because of mutations in the CL-remodeling enzyme, tafazzin. Here, we investigate the effects of tafazzin-deficiency on iron homeostasis in the mouse myoblast model of BTHS, TAZ-KO (tafazzin knockout) cells. Similarly to CL-deficient yeast cells, TAZ-KO cells exhibited elevated sensitivity to iron as well as to H2O2, which was alleviated by the iron chelator deferoxamine. TAZ-KO cells exhibited increased expression of the iron exporter ferroportin and decreased expression of the iron importer transferrin receptor, likely reflecting a regulatory response to elevated mitochondrial iron. Reduced activities of mitochondrial iron-sulfur cluster (Fe-S) enzymes suggested that the mechanism underlying perturbation of iron homeostasis was defective Fe-S biogenesis. We observed decreased levels of Yfh1/frataxin, an essential component of the Fe-S biogenesis machinery, in mitochondria from TAZ-KO mouse cells and in CL-deleted yeast crd1Δ cells, indicating that the role of CL in Fe-S biogenesis is highly conserved. Yeast crd1Δ cells exhibited decreased processing of the Yfh1 precursor upon import, which likely contributes to the iron homeostasis defects. Implications for understanding the pathogenesis of BTHS are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.