G protein-coupled olfactory receptors (ORs) enable us to detect innumerous odorants. They are also ectopically expressed, emerging as attractive drug targets. ORs can be promiscuous or highly specific, which is part of Nature′s strategy for odor discrimination. This work demonstrates that the extracellular loop 2 (ECL2) plays critical roles in OR promiscuity and specificity. Using site-directed mutagenesis and molecular modeling, we constructed 3D OR models in which ECL2 forms a lid of the orthosteric pocket. ECL2 controls the shape and the volume of the odorant-binding pocket, maintains the pocket hydrophobicity and acts as a gatekeeper of odorant binding. The interplay between the specific orthosteric pocket and the variable, less specific ECL2 controls OR specificity and promiscuity. The 3D models enabled virtual screening of new OR agonists and antagonists, exhibiting 78% hit rate in cell assays. This approach can be generalized to structure-based ligand screening for other GPCRs that lack high-resolution 3D structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.