The rotor, as the power output device of a cage motor, is subject to a type of invisible fault, BRB, during long-term use. The conventional motor vibration signal fault monitoring system only analyzes the rotor qualitatively for the fault of BRBs and cannot evaluate the fault degree of BRBs quantitatively. Moreover, the vibration signal used for monitoring has nonstationary and nonlinear characteristics. It is necessary to manually determine the time window and basis function when extracting the characteristics of the time-frequency domain. To address these problems, this paper proposes a method for quantitative analysis of BRBs based on CEEMD decomposition and weight transformation for feature extraction and then uses the AdaBoost to construct a classifier. The method applies CEEMD for adaptive decomposition while extracting IMFs’ energy as the initial feature values, uses OOB for contribution evaluation of features to construct weight vectors, and performs a spatial transformation on the original feature values to expand the differences between the feature vectors. To verify the effectiveness and superiority of the method, vibration signals were collected from motors in four BRB states to produce rotor fault data sets in this paper. The experiment results show that the feature extraction method based on CEEMD decomposition and weight transformation can better extract the feature vectors from the vibration signals, and the constructed classifier can accurately perform quantitative analysis of BRB fault.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.