The problem to be addressed in this paper is the lack of an advanced model in the literature to locate the optimal set of intersections in the evacuation network for implementing uninterrupted flow and signal control strategies, respectively, which can yield the maximum evacuation operational efficiency and the best use of available budgets. An optimization model, proposed in response to such needs, contributes to addressing the following critical questions that have long challenged transportation authorities during emergency planning, namely: given the topology of an evacuation network, evacuation demand distribution, and a limited budget, (1) how many intersections should be implemented with the signals and uninterrupted flow strategies; (2) what are their most appropriate locations; and (3) how should turning restriction plans be properly designed for those uninterrupted flow intersections? The proposed model features a bi‐level framework. The upper level determines the best locations for uninterrupted flow and signalized intersections as well as the corresponding turning restriction plans by minimizing the total evacuation time, while the lower level handles routing assignments of evacuation traffic based on the stochastic user equilibrium (SUE) principle. The proposed model is solved by a genetic algorithm (GA) ‐based heuristic. Extensive analyses under various evacuation demand and budget levels have indicated that the location selection of uninterrupted flow and signalized intersections plays a key role in emergency traffic management. The proposed model substantially outperforms existing practices in prioritizing limited resources to the most appropriate control points by significantly reducing the total evacuation time (up to 39%).
Many congested intersections have heavy traffic volume on movements for which there is insufficient capacity because of geometric limitations. Installing presignals at midblock locations and reorganizing traffic upstream of the approach of an intersection combine to be a promising and cost-effective method for addressing these capacity limitations. A coordinated optimization model was developed for an isolated intersection approach with presignals to increase the protected left-turn phase capacity. The presignal model was based on two principles: (a) explicitly capture the interaction between the presignal and the main signal by modeling the queuing process and capacity constraints of temporal and spatial limitations of the intersection and (b) optimize the signal timings of both the presignal and the main signal as well as the offset between them to produce the best operational strategy for the approach. The minimum green time required and the delay-minimization problems are considered. Extensive experimental analysis has shown that the presignal model outperforms the conventional control method (without presignal). Sensitivity analysis of the signal timing method that will assist traffic engineers with selecting the appropriate length of the sorting area, phase sequence, and early starting time of presignals was conducted. The results from the study offer a basis for traffic practitioners, researchers, and authorities on which to design and utilize presignals in locations where there is a need to increase intersection capacity for congested movements.
Review question / Objective: To investigate whether acupuncture and related therapies are effective and safe in relieving pain in patients with cancer pain, improving their quality of life, psychological problems (such as anxiety and depression), and reducing the dosage of analgesics. Condition being studied: There are 7 million new cases of cancer every year worldwide. Most cancer patients suffer from moderate to severe pain. Nearly 70% of patients with cancer pain receive no effective analgesic treatment.In China, about 1 million people suffer from cancer pain each year, and 60% to 90% of patients go to the hospital for it. These patients with cancer pain also present insomnia, anxiety, depression and other psychiatric symptoms. Cancer pain not only diminishes patients' quality of life and physical function, but also incurs economic costs to both their families and to society. INPLASY registration number: This protocol was registered with the International Platform of Registered Systematic Review and Meta-Analysis Protocols (INPLASY) on
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.