Bridge damage detection using vibration data has been confirmed as a promising approach. Compared to the traditional method that typically needs to install sensors or systems directly on bridges, the drive-by bridge damage detection method has gained increasing attention worldwide since it just needs one or a few sensors instrumented on the passing vehicle. Bridge frequencies extracted from the vehicle’s vibrations can be good references for damage detection. However, extant literature considered mainly low-frequency responses of the vehicle, while the high-frequency responses that also contained the bridge’s damage information were often ignored. To fill this gap, this paper developed a damage detection approach that utilized both low and high-frequency responses of the passing vehicle. Mel-frequency cepstral coefficients (MFCCs) and support vector machine (SVM) were employed to classify damage severity. Firstly, the vehicle’s frequency responses are utilized as input features to train SVM models to identify the bridge’s condition. Then, to reduce dimensions of inputs and improve training efficiency, frequency responses are projected from the Hertz scale into the Mel scale, and two means using MFCCs are used to feed different SVM models. A laboratory experiment with a U-shaped continuous beam and a model car was used to verify the effectiveness of the proposed method. Results showed that high-frequency responses contain much information about the bridge’s conditions, and using MFCCs could apparently improve computational efficiency. The errors of damage detection when a heavy car was employed were within 5%.
Recent decades have witnessed a rise in interest in bridge health monitoring utilizing the vibrations of passing vehicles. However, existing studies commonly rely on constant speeds or tuning vehicular parameters, making their methods challenging to be used in practical engineering applications. Additionally, recent studies on the data-driven approach usually need labeled data for damage scenarios. Still, getting these labels in engineering is difficult or even impractical because the bridge is typically in a healthy state. This paper proposes a novel, damaged-label-free, machine-learning-based, indirect bridge-health monitoring method named the assumption accuracy method (A2M). Initially, the raw frequency responses of the vehicle are employed to train a classifier, and K-folder cross-validation accuracy scores are then used to calculate a threshold to specify the bridge’s health state. Compared to merely focusing on low-band frequency responses (0–50 Hz), utilizing full-band vehicle responses can significantly improve the accuracy, meaning that the bridge’s dynamic information exists in the higher frequency ranges and can contribute to detecting bridge damage. However, raw frequency responses are generally in a high-dimensional space, and the number of features is much greater than that of samples. To represent the frequency responses via latent representations in a low-dimension space, appropriate dimension-reduction techniques are therefore, needed. It was found that principal component analysis (PCA) and Mel-frequency cepstral coefficients (MFCCs) are suitable for the aforementioned issue, and MFCCs are more damage-sensitive. When the bridge is in a healthy condition, the accuracy values obtained using MFCCs are primarily dispersed around 0.5, but following the occurrence of damage, they increased significantly to 0.89–1.0 in this study.
Scanning the bridge’s frequencies from the passing vehicle’s vibration data has been frequently investigated recently. However, in previous studies, vehicles were typically simplified to quarter- or half-car models, and apparent disparity could be observed between the models and real vehicles. To make the vehicle model more practical, in this study, a 3D vehicle model is built to extract the bridge’s frequencies from vehicle vibrations. For the first time, equations for calculating the contact-point (CP) response of the 3D vehicle model are derived with tire damping. Furthermore, residual CP responses between front and rear wheels are utilized to eliminate the inverse effects of road roughness, making the bridge frequencies outstanding in the frequency domain. The robustness of the proposed method is tested under different influence factors, and two possible measurement errors are as follows: the sensor position and axle distance when applying the proposed method in engineering. Results show that the proposed method performs stably under the influence of different road roughness classes and tire damping. Bridge frequencies can be identified when the vehicle is travelling at a highway speed (108 km/h in this study). Environmental noises can submerge the bridge’s high-order frequencies but have little influence on the low-frequency range. High bridge damping will restrain the transmission of bridge vibration to the vehicle, making high-order bridge frequencies less visible. In addition, the errors introduced by a vehicle body sensor position can be eliminated when calculating the CP responses for tires, thus will not influence bridge frequency identification. To avoid possible errors induced by manual measurement of the axle distance, a novel cross-correlation function-based method is employed, which is verified effective and practical for calculating residual CP responses.
Constructional material deterioration and member damage can cause changes in the dynamic characteristics of bridge structures, and such changes can be tracked in the responses of passing vehicles via the vehicle-bridge interaction (VBI). Though data-driven methods have shown promising results in damage inspection for drive-by methods, there is still much room for improvement in their performance. Given this background, this paper proposes a novel time-domain signal processing algorithm for the raw vehicle acceleration data of data-driven drive-by inspection methods. To achieve the best data processing performance, an optimizing strategy is designed to automatically search for the optimal parameters, tuning the algorithm. The proposed method intentionally overcomes the difficulties in the application of drive-by methods, such as measurement noise, speed variance, and enormous data volumes. Meanwhile, the use of this method can greatly improve the accuracy and efficiency of Machine Learning (ML) models in vehicle-based damage detection. It consists of a filtering process to denoise the data, a pooling process to reduce data redundancy, and an optimizing procedure to maximize algorithm performance. A dataset is obtained to validate the proposed algorithm through laboratory experiments with a scale truck model and a steel beam. The results show that, compared to using raw data, the present algorithm can increase the average accuracy by 12.2–15.0%, and the average efficiency by 35.7–96.7% for different damaged cases and ML models. Additionally, the functions of filtering and pooling operations, the influence of window function parameters, as well as the performance of different sensor locations, are also investigated in the paper. The goal is to present a signal processing algorithm for data-driven drive-by inspection methods to improve their detection performance of bridge damage caused by material deterioration or structural change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.