Lactate dehydrogenase A (LDHA) has been reported to be involved in the initiation and progression of tumors. However, the potential role of LDHA in pituitary adenoma (PA) remains unknown. In this study, we showed that the expression levels of LDHA mRNA and protein were significantly elevated in invasive PA samples, and positively correlated with higher Ki-67 index. Overexpression of LDHA in a PA cell line (GH3) promoted glucose uptake through the upregulation of glucose transporter-1 (Glut1), lactate secretion and induced cellular invasion by upregulation of matrix metalloproteinase2 (MMP2). LDHA also promoted GH3 cell proliferation through induction of cell cycle progression via activation of the Akt-GSK-3β-cyclinD1 pathway. Accordingly, oxamate-induced inhibition of LDHA suppressed glucose uptake, lactate secretion, invasion and proliferation in GH3 cells via down regulation of Glut1 and MMP2 expression and inhibition of the Akt-GSK-3β-cyclinD1 pathway. Moreover, oxamate induced GH3 cell apoptosis by increasing mitochondrial reactive oxygen species (ROS) generation. In vivo, LDHA overexpression promoted tumor growth, and oxamate delayed tumor growth. In primary PA cell cultures, oxamate also effectively suppressed invasion and proliferation. Our data indicate that LDHA is involved in promoting the progression of PA, and oxamate might be a promising therapeutic agent for the treatment of PA.
Metformin is an anti-hyperglycemic agent used to treat diabetes, and recent evidence suggests it has antitumor efficacy. Because growth hormone-secreting pituitary adenoma (GH-PA) patients have a high incidence of diabetes frequently treated with metformin, we assessed the antitumor effect of metformin on GH-PA. We found that metformin effectively inhibited proliferation and induced apoptosis in the GH-PA cell line GH3. We detected a decrease in mitochondrial membrane potential (MMP), an increase in expression of pro-apoptotic proteins, and a decrease in expression of an anti-apoptotic protein in metformin-treated GH3 cells, which suggests involvement of the mitochondrial-mediated apoptosis pathway. Inhibition of AMPK, which is activated by metformin, failed to reverse the antiproliferative effect. ATF3 was upregulated by metformin, and its knockdown significantly reduced metformin-induced apoptosis. In addition, GH secretion was inhibited by metformin through suppression of STAT3 activity independently of AMPK. Metformin also significantly suppressed cellular proliferation and GH secretion in primary human GH-PA cells. Metformin also significantly inhibited GH3 cell proliferation and GH secretion in vivo. ATF3 upregulation and p-STAT3 downregulation were confirmed in xenografts. These findings suggest metformin is a potentially promising therapeutic agent for the treatment of GH-PA, particularly in patients with diabetes.
Focal cortical dysplasia (FCD) is a major cause of intractable epilepsy in children however the mechanisms underlying the pathogenesis of FCD and FCD induced epilepsy remain unclear. Increasing evidence suggests that the large-pore ion channels, pannexin 1 (Panx1) and 2 (Panx2), are involved in epilepsy and brain development. In this study, we investigated the expression of Panx1 and Panx2 in surgical samples from patients with FCD type Ia (FCDIa), type IIa (FCDIIa), and type IIb (FCDIIb) and in age-matched autopsy control samples. We found Panx1 mRNA and protein levels were both increased in all these FCD samples. Immunohistochemical analyses revealed that Panx1 was mainly distributed in microcolumn neurons, dysmorphic neurons (DNs), balloon cells (BCs) and reactive astrocytes. Double-labeled staining showed that the Panx1-positive neurons were mostly glutamatergic DNs and occasionally GABAergic normal-appearing neurons. Importantly, the protein levels of Panx1 positively correlated with the frequency of seizures. Intriguingly, the Panx2 mRNA and protein levels were only upregulated in FCDIIb lesions and characteristically expressed on SOX2-positive multipotential BCs. Immunofluorescent experiments identified that Panx2-positive BCs mainly expressed the neuronal differentiation transcription factor MASH1 but not the immature glial marker vimentin. Taken together, our results established a potential role of the specific expression and cellular distribution patterns of Panx1 and Panx2 in FCD-associated epileptogenesis and pathogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.