Hyperspectral remote sensing technology is a rapidly developing new integrated technology that is widely used in numerous areas. Rich spectral information from hyperspectral images can aid in the classification and recognition of the ground objects. However, the high dimensions of hyperspectral images cause redundancy in information. Hence, the high dimensions of hyperspectral data must be reduced. This paper proposes a hybrid feature selection strategy based on the simulated annealing genetic algorithm (SAGA) and the Choquet fuzzy integral (CFI). The band selection method is proposed from subspace decomposition, which combines the simulated annealing algorithm with the genetic algorithm in choosing different cross-over and mutation probabilities, as well as mutation individuals. Then, the selecting bands are further refined by CFI. Experimental results show that the proposed method can achieve higher classification accuracy than traditional methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.