Ultra-high performance concrete (UHPC) has been demonstrated to be a realistic alternative to less maintenance and significantly longer service life due to its better mechanical properties and low permeability. The bond performance of the deformed steel bar embedded in UHPC is critically important for the safety of the UHPC structures. This paper conducted an experimental investigation on the bond behavior of deformed steel bars and UHPC. The impacts of loading method, UHPC strength, steel fiber type and content, rebar diameter, and cover thickness were studied. The testing results revealed that the specimens failed in three modes: pull-out, splitting + pull-out, and cone failure. The main factors affecting the bond strength are UHPC compressive strength, cover thickness, and fiber characteristics. The peak slip of rebar-UHPC increases with cover thickness and rebar diameter. Finally, an analytical model of the bond stress-slip relationship between the UHPC and deformed steel bar is obtained, which is in suitable agreement with the test results.
In this paper, 3D finite element simulations were conducted for lap-spliced ultra-high-performance concrete (UHPC) beams using ABAQUS software. Based on the concrete damaged plasticity (CDP) model, the plastic damage factor was introduced to simulate the material properties of UHPC. The nonlinear characteristics of the steel bar and UHPC were considered, and the bond–slip constitutive relationship was selected to evaluate the bond–slip between the lap-spliced steel bar and UHPC. The simulated load–deflection curve, peak load, bond strength, and failure mode were in good agreement with the experimental results. The verified finite element model was used to analyze the parameters of the lap-spliced UHPC beam. The effects of lap-spliced steel bar diameter, stirrup spacing of non-lap segment, and shear span ratio on the mechanical properties and bond properties of the lap-spliced UHPC beam were studied. This study can provide a reference for the future simulation and design of lap-spliced UHPC beams.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.