The effects of gas flow rate and 22 kinds of nozzle layouts on the circulation flow rate were researched during the RH refining process using a water model and a mathematical model. Numerical simulations agreed with the water model experiment well. The results showed that the circulating flow rate increased with an increase of the gas flow rate. The critical value of the gas flow rate was 2.4 m3/h. Out of the 22 kinds of layouts, the 127-87 symmetrical layout was the optimal layout, for which the circulating flow rate reached 29.8 m3/h, the area of blind zone was the smallest and the mixing effect of the molten steel was the best. The working stroke and carrying capacity of the bubbles were important factors that affected the circulating flow rate. Among the four types of layouts, when the nozzles were in the one-side layout and the one-row layout, the main factor for improving the circulating flow rate was the working stroke of the bubbles. When nozzles were in the staggered layout and the symmetrical layout, the carrying capacity of the bubbles was the main factor for improving the circulating flow rate. For the same conditions, the carrying capacity of the bubbles had a greater effect on improving the circulating flow rate than the bubble stroke.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.