Background: Recent studies have found that microRNAs (miRNAs) play a critical role in development and progression of intervertebral disc degeneration. In the present study, we examined the role of miR-185 in nucleus pulposus cell behavior in vitro and the histological changes of intervertebral disc tissue in intervertebral disc degeneration rat models in vivo. Methods: Intervertebral disc degeneration models were developed in Sprague-Dawley rats. Intervertebral disc tissue was collected for histological evaluation after miR-185 agomir/agomir transduction. Next, nucleus pulposus tissues were collected from lumbar intervertebral discs to isolate nucleus pulposus cells, which were treated with miR-185 mimic/inhibitor and an inhibitor of the Wnt signaling pathway to assess cell viability and apoptosis. Results: We observed a high expression of Galectin-3 in nucleus pulposus cells of rats with intervertebral disc degeneration. Bioinformatics prediction and dual-luciferase reporter assay confirmed that miR-185 specifically binds to and negatively regulates Galectin-3. Furthermore, we found that miR-185 inhibition resulted in increased expression of Galectin-3, pro-autophagy factors (LC3 and Beclin-1), and pro-apoptosis factors (caspase-3 and Bax), along with the activation of the Wnt/b-catenin signaling pathway. Moreover, the gain-and loss-of-function studies suggested that miR-185 overexpression promoted cell viability and inhibited nucleus pulposus cell apoptosis and autophagy via inactivation of the Wnt/b-catenin signaling pathway. Moreover, miR-185 agomir alleviated the histological changes observed in intervertebral disc tissues in intervertebral disc degeneration rats, which helped us validate the results observed in vitro. Conclusions: Overexpression of miR-185 promotes nucleus pulposus cell viability and reduces the histological changes observed in intervertebral disc tissues in rats with intervertebral disc degeneration via inactivation of the Wnt/b-catenin signaling pathway and Galectin-3 inhibition. Our findings also highlight the potential of miR-185 as a promising novel therapeutic target to prevent and control intervertebral disc degeneration.
Background and purpose: An increasing number of studies have revealed that microRNAs (miRNAs) are the main drivers of hepatocarcinogenesis including progression to later stages of liver cancer. Recently, miR-548b was identified as a cancer-related miRNA in glioma and tongue squamous cell carcinoma. Nonetheless, the expression pattern and specific roles of miR-548b in hepatocellular carcinoma (HCC) have not yet been clarified. Methods: Expression levels of miR-548b in HCC tissues and cell lines were measured by reverse-transcription quantitative PCR. In vitro and in vivo functional assays were performed to determine the effects of miR-548b on the malignant phenotypes of HCC cells. In addition, the molecular mechanisms by which miR-548b regulates the initiation and progression of HCC were investigated in detail. Results: miR-548b expression was weak in HCC tissues and cell lines. The low miR-548b expression significantly correlated with tumor size, TNM stage, and venous infiltration of HCC. In addition, exogenous miR-548b expression suppressed HCC cell proliferation, colony formation, and metastasis and induced apoptosis in vitro. Silencing of miR-548b exerted an opposite effect on these characteristics of HCC cells. Furthermore, miR-548b overexpression hindered tumor growth in vivo. Mechanistic analysis identified high-mobility group box 1 (HMGB1) as a direct target gene of miR-548b in HCC cells. Moreover, an HMGB1 knockdown reproduced the effects of miR-548b upregulation on HCC cells. Recovered HMGB1 expression reversed the effects of miR-548b on HCC cells. Notably, miR-548b overexpression deactivated the PI3K-AKT pathway in HCC cells in vitro and in vivo. Conclusion: Our findings provide the first evidence that miR-548b restrains HCC progression, at least partially, by downregulating HMGB1 and deactivating the PI3K-AKT pathway. Thus, miR-548b might be a novel target for the development of new therapies for HCC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.