Polygonatum cyrtonema Hua is a traditional Chinese herb medicine, and it is widely distributed in China. The intrageneric taxonomy and phylogenetic relationships within Polygonatum have long been controversial due to their morphological similarity and lacking special DNA barcodes. In this paper, the complete chloroplast genome is a relatively conserved quadripartite structure including a large single copy region of 84,711bp, a small single copy region of 18,210bp, and a pair of inverted repeats region of 26,142bp. A total of 342 simple sequence repeats were identified, and most of them were found to be composed of A/T, including 126 mono-nucleotides and 179 di-nucleotides. Nucleotide diversity was analyzed and eight highly variable regions (psbl~trnT-CGU, atpF~atpH, trnT-GGU~psbD, psaJ~rps20, trnL-UAG~ndhD, ndhG~ndhl, ndhA, and rpl32~ccsA) were identified as potential molecular marker. Phylogenetic analysis based on the whole chloroplast genome showed that P. cyrtonema, within the family Asparagaceae, is closely related to P. sibbiricum and P. kingianum. The sequence matK, trnT-GGU & ccsA, and ndhG~ndhA were identified as three DNA barcodes. The assembly and comparative analysis of P. cyrtonema complete chloroplast genome will provide essential molecular information about the evolution and molecular biology for further study.
IntroductionPolygonati Rhizoma is a multi-purpose food with medicinal uses. Fermentation of Polygonati Rhizoma by lactic acid bacteria could provide new insights into the development of Polygonati Rhizoma products.MethodsIn this study, Lactiplantibacillus plantarum was fermented with Polygonati Rhizoma extracts in a bioreactor under aerobic and anaerobic conditions with pH and DO real-time detection. Metabolic profiling was determined by UHPLC-QE-MS/MS system. Principal component analysis and orthogonal partial least-squares discriminant analysis were used to perform multivariate analysis.ResultsA total of 98 differential metabolites were identified in broth after fermentation, and 36 were identified between fermentation under aerobic and anaerobic conditions. The main metabolic pathways in the fermentation process are ABC transport and amino acid biosynthesis. Most of the compounds such as L-arginine, L-aspartic acid, leucine, L-lysine, citrate, inosine, carnitine, betaine, and thiamine were significantly increased during fermentation, playing a role in enhancing food flavor. Compared with anaerobic fermentation, aerobic conditions led to a significant rise in the levels of some compounds such as valine, isoleucine, and glutamate; this increase was mainly related to branched-chain amino acid transaminase, isocitrate dehydrogenase, and glutamate dehydrogenase.DiscussionAerobic fermentation is more beneficial for the fermentation of Polygonati Rhizoma by L. plantarum to produce flavor and functional substances. This study is the first report on the fermentation of Polygonati Rhizoma by L. plantarum and provides insights that would be applicable in the development of Polygonati Rhizoma fermented products.
Poria cocos is an important edible and medicinal fungus with a long history. However, the lack of adequate genetic tools has hindered molecular genetic research and the genetic modification of this species. In this study, the endogenous U6 promoters were identified by mining data from the P. cocos genome, and the promoter sequence was used to construct a sgRNA expression vector pFC332-PcU6. Then, the protoplast isolation protocol was developed, and the sgRNA-Cas9 vector was successfully transformed into the cells of P. cocos via PEG/CaCl2-mediated transformation approach. Off-target sites were genome-widely predicted and detected. As a result, the target marker gene ura3 was successfully disrupted by the CRISPR-Cas9 system. This is the first report of genome editing in P. cocos using CRISPR-Cas9 system integrating genome-wide off-target prediction and detection. These data will open up new avenues for the investigation of genetic breeding and commercial production of edible and medicinal fungus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.