Hepatocirrhosis is one of the most severe complications of chronic hepatic disease in terms of medical intervention, and the available therapies are limited and not very successful. In this study, bone marrow-derived mesenchymal stem cells (BM-MSCs) from host rats were transduced with an adenoviral vector labelled with green fluorescent protein (EGFP) to overexpress hepatocyte growth factor (HGF). The therapeutic effect of these modified stem cells (HGF-BM-MSC group) transplanted intravenously into hepatocirrhosis model rats treated with CCl4 was evaluated using serological, biochemical and histological approaches. We compared the rats in the HGF-BM-MSC group with those in the other groups (rats treated with BM-MSCs, rats treated with HGF and untreated rats (Controls)) in detail. The localisation of EGFP-tagged BM-MSCs in the injured liver was evaluated using a microscope, and the cells co-expressed hepatocyte nuclear factor 4α, albumin and cytokeratin 18. After treatment for 4 weeks, the HGF-BM-MSC, BM-MSC and HGF groups exhibited increased protein and mRNA levels of hepatocyte nuclear factor 4α, albumin and cytokeratin 18, but decreased levels of aspartate aminotransferase, alanine aminotransferase and total bilirubin. These findings indicate that BM-MSC transplantation and HGF application have great potential for the treatment of hepatocirrhosis.
Dental pulp stem cell (DPSC) transplantation has been demonstrated to promote the regeneration and repair of tissues and organs and is a potentially effective treatment for radioactive esophageal injury. In this study, to explore the therapeutic effects of DPSCs on acute radiation-induced esophageal injury, DPSCs were cultured and transplanted into rats with acute radioactive esophageal injuries induced by radioactive 125I seeds in vivo. In the injured esophagus, PKH26-labeled DPSCs co-localized with PCNA, CK14, CD71, and integrin α6, and the expression levels of these four makers of esophageal stem cells were significantly increased. After DPSC transplantation, the injured esophagus exhibited a greater thickness. In addition, the esophageal function and inflammation recovered faster. The results demonstrated that transplanted DPSCs, which trans-differentiated into esophageal stem cells in vivo, could repair the damaged esophageal tissue.
Our present data demonstrate that CYP1A2 SNPs rs11636419 and rs17861162 alter the sensitivity of epidural ropivacaine in patients undergoing breast cancer surgery. As such, detection of these two CYP1A2 SNPs may aid in the development of effective personalized treatments for breast cancer patients.
Background/Aims:The aim of this study was to determine the optimal volume of peritoneal effusion required to diagnose malignant ascites.Patients and Methods:The authors recruited 123 patients with shifting dullness and obtained 123 peritoneocentesis fluid samples. The samples were divided into seven aliquots of 10, 50, 100, 150, 200, 250, and 300 mL for cytopathological examination. The sensitivity, specificity, negative predictive value (NPV), and positive predictive value (PPV) were calculated for each aliquot.Results:The sensitivity for the diagnosis of malignant ascites gradually increased as the sample volume increased and reached a constant value at a volume of 200 mL. The sensitivity and NPV for the 10-, 100-, and 150-mL volumes were significantly different from those for the 200-mL sample. However, the sensitivity and NPV for the 250- and 300-mL volumes were not significantly different. The sensitivity for the diagnosis of malignant ascites is closely related to the volume of peritoneal fluid that is extracted by peritoneocentesis.Conclusion:We suggest a volume of 200 mL as the optimal minimum volume to confirm malignant ascites in patients with shifting dullness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.