Lung cancer is the leading cause of human cancer mortality due to the lack of early diagnosis technology. The low-dose computed tomography scan (LDCT) is one of the main techniques to screen cancers. However, LDCT still has a risk of radiation exposure and it is not suitable for the general public. In this study, plasma metabolic profiles of lung cancer were performed using a comprehensive metabolomic method with different liquid chromatography methods coupled with a Q-Exactive high-resolution mass spectrometer. Metabolites with different polarities (amino acids, fatty acids, and acylcarnitines) can be detected and identified as differential metabolites of lung cancer in small volumes of plasma. Logistic regression models were further developed to identify cancer stages and types using those significant biomarkers. Using the Variable Importance in Projection (VIP) and the area under the curve (AUC) scores, we have successfully identified the top 5, 10, and 20 metabolites that can be used to differentiate lung cancer stages and types. The discrimination accuracy and AUC score can be as high as 0.829 and 0.869 using the five most significant metabolites. This study demonstrated that using 5 + metabolites (Palmitic acid, Heptadecanoic acid, 4-Oxoproline, Tridecanoic acid, Ornithine, and etc.) has the potential for early lung cancer screening. This finding is useful for transferring the diagnostic technology onto a point-of-care device for lung cancer diagnosis and prognosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.