Heparin has been used clinically as an anticoagulant for over 60 years. Typically isolated from porcine intestine, heparin is a mixture of dimeric glycosidic sequences generating complex polysaccharide glycosaminoglycan chains. Recently, certain lots of heparin have been associated with an acute, rapid onset of significant side effects indicative of an allergic-type reaction. To identify potential causes for this serious rise in side effects, we examined lots of heparin that correlated with adverse events using orthogonal high resolution analytical techniques. Through comparison of these results with those obtained on reference lots, suspect lots were found to contain a highly sulfated chondroitin sulfate contaminant. Through detailed structural analysis, the contaminant was found to contain a disaccharide repeat unit of glucuronic acid linked β1→3 to a β-galactosamine. Surprisingly, the disaccharide unit contains an unusual sulfation pattern and is sulfated at the 2-O and 3-O positions of the glucuronic acid as well as at the 4-O and 6-O positions of the galactosamine. The presence of such a contaminant could elicit a biological response as highly sulfated polysaccharides, such as dextran sulfate, are known to be potent mediators of the immune system. Given the nature of the contaminant, traditional screening tests -such as those present as part of the current United States Pharmacopeia heparin monograph -cannot differentiate between affected and unaffected lots. Our analysis suggests effective screening methods that can be employed to determine whether or not heparin lots contain the contaminants reported here.
Heparin is unique as one of the oldest drugs currently still in widespread clinical use as an anticoagulant, a natural product, one of the first biopolymeric drugs, and one of the few carbohydrate drugs. Recently, certain batches of heparin have been associated with anaphylactoid-type reactions, some leading to hypotension and death. These reactions were traced to contamination with a semi-synthetic oversulfated chondroitin sulfate (OSCS). This Highlight reviews the heparin contamination crisis, its resolution, and the lessons learned. Pharmaceutical scientists now must consider dozens of natural and synthetic heparinoids as potential heparin contaminants. Effective assays, which can detect both known and unknown contaminants, are required to monitor the quality of heparin. Safer and better-regulated processes are needed for heparin production.
We report the first chemoenzymatic synthesis of the stable isotope-enriched heparin from a uniformly labeled [ 13 C, 15 N]N-acetylheparosan (-GlcA(1,4)GlcNAc-) prepared from E. coli K5. Glycosaminoglycan (GAG) precursors and heparin were formed from N-acetylheparosan by the following steps: chemical N-deacetylation and N-sulfonation leading to N-sulfoheparosan (-GlcA (1,4)GlcNS-); enzyme-catalyzed C 5 -epimerization and 2-O-sulfonation leading to undersulfated heparin (-IdoA2S(1,4)GlcNS-); enzymatic 6-O-sulfonation leading to the heparin backbone (-IdoA2S(1,4)GlcNS6S-); and selective enzymatic 3-O-sulfonation leading to the anticoagulant heparin, containing the GlcNS6S3S residue. Heteronuclear, multidimensional nuclear magnetic resonance spectroscopy was employed to analyze the chemical composition and solution structure of [ 13 C, 15 N]N-acetylheparosan, precursors, and heparin. Isotopic enrichment was found to provide well-resolved 13 C spectra with the high sensitivity required for conformational studies of these biomolecules. Stable isotope-labeled heparin was indistinguishable from heparin derived from animal tissues and is a novel reagent for studying the interaction of heparin with proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.